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Siyuan Zhou', Shuai Mu?
'MongoDB Inc. *Stony Brook University

Abstract

In this paper, we present the design and implementation of
strongly consistent replication in MongoDB. MongoDB pro-
vides linearizability and tolerates any minority of failures
through a novel consensus protocol that derives from Raft. A
major difference between our protocol and vanilla Raft is that
MongoDB deploys a unique pull-based data synchronization
model: a replica pulls new data from another replica. This
pull-based data synchronization in MongoDB can be initiated
by any replica and can happen between any two replicas, as
opposed to vanilla Raft, where new data can only be pushed
from the primary to other replicas. This flexible data trans-
mission topology enabled by the pull-based model is strongly
desired by our users since it has an edge on performance and
monetary cost. This paper describes how this consensus pro-
tocol works, how MongoDB integrates it with the rest of the
replication system, and the extensions of the replication pro-
tocol that support our rich feature set. Our evaluation shows
that MongoDB effectively achieved the design goals and can
replicate data efficiently and reliably.

1 Introduction

MongoDB is a general purpose, document-based, distributed
database. In the last few years, we have been focusing on
improving its support for replication, as there has been an
increasing demand for stronger fault tolerance. In previous
papers we discussed how MongoDB supports tunable con-
sistency [29] and how causal consistency works [34]. In
this paper we present the details of how MongoDB provides
linearizable [12] replication with fault tolerance.

A common approach to fault-tolerant linearizable replica-
tion is through consensus protocols [24, 4]. After studying
the popular consensus protocols including Paxos [17] and
Raft [26], we concluded that no existing consensus protocols
directly fit our needs without heavy modifications. The key
reason is that these existing protocols are push-based: there
is usually a primary server and the primary will push new data
to all replicas. Yetin MongoDB we aim for a pull-based syn-
chronization model: a replica fetches new data proactively
from another replica, and not necessarily from the primary.

There are a few reasons for why we target the pull-based
synchronization model. First, allowing data synchronization

to happen between any two replicas enables a more flexi-
ble data transmission topology, that could utilize networks in
more optimal ways. Many of our users prefer being able to
configure how their network is utilized, especially for those
who deploy their systems across different datacenters. Sec-
ond, using a pull-based data synchronization model gives us
backward-compatibility as we have previously implemented
a preliminary version of a pull-based primary-backup repli-
cation scheme that is not backed by any consensus protocols,
and thus has limited fault tolerance.

As there is no direct fit, we developed a new replication
(consensus) scheme based on the Raft protocol. We chose
Raft as the base because it is more accepted for industry use,
easy to understand, and similar to our previous replication
protocol, but we believe other bases such as Paxos should
work too. The principle of our approach is to decouple
data synchronization in Raft (mostly the AppendEntries RPC)
into two parts: replicas pulling new data from the peers,
and replicas reporting their latest replication status so that a
request can commit after it reaches a majority of replicas.

The development of the new replication scheme is, how-
ever, easier said than done. The main challenge is in the
subtlety of the Raft (and any other) consensus protocol. Dur-
ing our development we found that any unthoughtful changes
to the protocol would easily introduce new corner cases that
would break the correctness of the system. To verify that our
design and implementation are correct, we have done exten-
sive verification and testing on the protocol including model
checking using TLA+, unit testing, integration testing, fuzz
testing [1 1] and fault-injection testing.

Our developed protocol achieves the goal of allowing data
pulling between any two replicas. Unlike Raft which can
only push data from the primary to other replicas (broad-
cast), our system supports arbitrary data synchronization
paths: from linear chaining to broadcast. This gives Mon-
goDB several advantages over using vanilla Raft, including
both performance-wise (e.g., saving leader bandwidth) and
management-wise (e.g., controlling data transmission paths).

The main contributions of this paper include:

* We design a new consensus protocol based on Raft.
Our protocol better meets the needs of MongoDB. It
enables more flexible and customizable data synchro-
nization paths during replication.

* We describe the design choices in how MongoDB adopts
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this consensus protocol. MongoDB offers a unique fea-
ture set, which brings extra challenges in designing and
implementing its replication. For example, we provide
speculative execution to be compatible with MongoDB’s
weak consistency features, but also guarantee lineariz-
able log replication with rollbacks.

* We report the evaluation results of MongoDB for differ-
ent replication parameters. Our evaluation shows that
MongoDB replication is reliable and efficient.

We will organize the rest of paper as follows. Section 2
gives an overview of the background. Section 3 describes the
main body of the consensus protocol. Section 4 gives a few
important extensions to our design. Section 5 discusses the
evaluation results. Section 6 discusses related works before
we conclude.

2 Background

MongoDB interfaces and architecture. MongoDB is a
database that stores data as documents and supports general
CRUD operations on one or many documents with a rich
query language. Each document is a binary JSON-like (called
BSON) object. Documents are identified by unique ids and
grouped in collections, which are similar to tables in a SQL
database.

To provide high availability, MongoDB provides the ability
to run a database as a replica set, which is a set of MongoDB
nodes that act as a consensus group, where each node main-
tains a logical copy of the database state. MongoDB also
supports sharding for horizontal scaling, which distributes all
data in a collection onto different shards in a share-nothing
manner. Each shard is deployed as a replica set. In this paper
we focus on a single replica set, as sharding is orthogonal.

Consistency and fault tolerance. Previous papers have de-
scribed how MongoDB can achieve weaker consistency lev-
els, including causal consistency [34, 29]. In this paper, we
focus on the strongest consistency level—linearizability [12].
We assume a (partially) asynchronous environment where
messages can be arbitrarily delayed and there are no perfect
failure detectors. For each replica set, at most a minority of
servers can fail in order to maintain availability. The problem
of fault-tolerant linearizable replication is commonly solved
by consensus protocols. Examples include Viewstamped
Replication [24], Paxos [17], Zab [13], and Raft [26]. Our
solution started with adopting the recent and popular Raft,
but ended up basically inventing a new protocol with many
heavy modifications.

Evolution of MongoDB’s pull-based replication. Start-
ing from MongoDB version 1.0 over a decade ago, MongoDB
supported replication with a primary-backup scheme. Un-
like conventional primary-backup replication schemes where
updates are usually pushed from where they are firstly

received—the primary—to the secondaries (backups), we
chose a design in which a secondary server can constantly
pull updates from other servers, and not necessarily from the
primary.

A major benefit of the pull-based approach is that it enables
a more flexible control of how data is transmitted over the
network. Depending on users’ needs, the data transmission
can be in a star topology, a chaining topology, or a hybrid one.
The ability of controlling data transmission paths is a strong
customer need, mostly for reasons related to performance and
monetary cost. For example, when deployed in clouds like
Amazon EC2, data transmission inside a datacenter is free
and fast, but is expensive and subject to limited bandwidth
across datacenters.

The pull-based approach has led our designs while we
continually evolved our replication protocols in the last few
releases. In earlier releases several years ago, we assumed
a semi-synchronous network: either there is manual control
of failover (the user needs to appoint a node as the new pri-
mary when the old one fails), or all messages are bounded
to arrive within 30 seconds for failure detection. Starting
from 2015, we remodeled our replication scheme based on
the Raft protocol. This new protocol guarantees safety in
an asynchronous network (i.e., messages can be arbitrarily
delayed or lost) and supports fully autonomous failure recov-
ery with a smaller failover time. Same as before, this new
protocol is still pull-based. We will describe how it works in
the next section.

3 Design

This section describes how replication in MongoDB works,
including the overall architecture and data structures (§3.1),
the main body of the replication protocol (§3.2), a discussion
of correctness, (§3.3), and how the system chooses data trans-
mission paths (§3.4). Attached to this paper is an appendix
that summarizes the difference between the Raft protocol and
MongoDB'’s consensus protocol.

3.1 Preliminaries

In MongoDB, the object for replication is called the oplog.
An oplog is a sequence of log entries; each log entry con-
tains a database operation. Figure 1 shows an example of
oplog entry. The oplog is stored in the oplog collection,
which behaves in almost all regards as an ordinary collection
of documents. The oplog collection automatically deletes
its oldest documents when they are no longer needed and
appends new entries at the other end.

An oplog entry needs to be replicated to at least a majority
of servers to commit: a committed entry persists through any
minority failures. The system will wait for the oplog entry
to commit before it acknowledges the client. MongoDB also
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// The oplog entry timestamp

"ts": Timestamp (1597904287, 12),

// The term of this entry

"t": NumberLong (40),

// The operation type, "i" for insert

"op": "i",

// The collection name

"ns": "test.collection",

// A unique collection identifier

"ui": UUID("947b54f...852f62")),

// The document to insert

"O" . {
"_id": ObjectId("S5f3e...b950"),
"x": 1

Figure 1: Example of key oplog entry fields for an ““insert"’
operation

supports operations with weaker consistency, in which case
the system can acknowledge clients before the oplog entry
commits [29, 34]. After replication, all servers of the same
replica set will have identical oplogs. Oplog entries will be
applied in the same order on all servers.

A server can act as either a primary or a secondary. ! Only
a primary can process write requests. A server has a third role
as a candidate when it is transitioning from a secondary to
a primary through elections. MongoDB’s election rules are
the same as Raft’s. When a node decides to start an election,
for example, because it has not seen a primary for an election
timeout, the node transitions to a candidate role, increases its
term, and sends vote requests to others. A voter can grant
its vote to only one candidate in a given term and only if
the candidate has the same or a more up-to-date log than the
voter. The candidate wins the election if it is able to collect
votes from a majority of nodes including the candidate itself;
it then becomes a primary.

After the election, the new primary will have a unique,
monotonically increasing term number. When the primary
generates a new oplog entry, it will append this entry into
its own oplog, and replicate the entries through the data
replication protocol described in Section 3.2. It could happen
that more than one server is acting as a primary, but the data
replication and the election protocols collectively guarantee
that at most one primary can successfully commit log entries
at a particular index.

In MongoDB, each oplog entry is assigned a timestamp
and annotated with the term of the primary. The timestamp
is a monotonically increasing logical clock that exists in the
system before this work. It is used to index the oplog entries,
similar to the log index in Raft. A pair of term and timestamp,
referred to as an OpTime, can identify an oplog entry uniquely

10ur choice of terminology is for historical reasons. They are the same
as a leader and a follower used in Raft.

inareplica set and give a total order of all oplog entries among
all replicas. OpTimes are compared lexicographically, i.e.,
an OpTime is greater than another if its term is higher or the
terms are the same but its timestamp is higher.

3.2 Data Replication

As mentioned in previous sections, MongoDB uses a pull-
based replication scheme. Unlike Raft and other common
consensus protocols that would initiate RPCs from the pri-
mary to secondaries when the primary tries to replicate new
log entries (for example, in Raft, this is the AppendEntries
RPC), in MongoDB, the primary waits for the secondaries to
pull the new entries that are to be replicated.

After appending an entry to the oplog, the primary can
process two types of RPCs from secondaries: PullEntries
and UpdatePosition. A secondary will use PullEntries to
fetch new logs, and use UpdatePosition to report its status
so that the primary can determine which oplog entries have
been safely replicated to a majority of servers and commit
them. Similar to Raft, once an entry is committed, all prior
entries are committed indirectly.

3.2.1 PullEntries

Note that a key design choice is that a secondary does not
have to send PullEntries only to the primary. Instead, the sec-
ondary can pull new entries from any (nearby) servers. This
secondary is called the syncing server, while the upstream
server that receives the PullEntries RPC is called the sync
source.

A secondary continuously sends PullEntries to the selected
sync source (see more details about the sync source selec-
tion in §3.4) to retrieve new log entries when they become
available. The PullEntries RPC includes the latest oplog
timestamp (prevLogTimestamp) of the syncing server as an
argument. When receiving PullEntries, a server will reply
with its oplog entries after and including that timestamp if it
has a longer or the same log, or the server could reply with an
empty array if its log sequence is shorter. Before returning a
response when the log is the same, PullEntries waits for new
data for a given timeout (5 seconds by default) to avoid busy
looping.

When the syncing server receives the reply of PullEntries,
it will try to merge the log entries in the reply into its own
oplog. Before merging, it checks if the incoming log entries
concatenate with the local oplog. In particular, it checks
if the first received entry has the same OpTime as the last
local oplog entry. Only if so, the syncing server continues
to merge by appending the received entries to the oplog. If
the received oplog entries don’t overlap with the local ones
and the received entries are "newer" by comparing their last
OpTimes, the syncing server will traverse the oplog on its
sync source in order to find their last common entry, then
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discard any diverged oplog entries since then. Afterwards,
the syncing server should be able to pull new data and append
it to the local oplog. Discarding diverged logs will require
more work than ordinary Raft implementations because of
our optimizations on speculative execution (see details in

§4.1).

3.2.2 UpdatePosition

After retrieving new entries into its local oplog with Pul-
I[Entries, the secondary will send UpdatePosition to its sync
source, reporting the latest log entry’s OpTime. When receiv-
ing the UpdatePosition, the server will forward the message
to its sync source, and so forth, until the UpdatePosition
reaches the primary. The primary keeps a non-persistent
map in memory that records the latest known log entry’s
OpTime on every replica, including its own, as their log po-
sitions. When receiving a new UpdatePosition, the primary
will compare the received OpTime with its local record. If
the received one is newer, the primary will replace its local
record with the received one. Afterwards, the primary will
do a count on the log positions of all replicas: if a major-
ity of replicas have the same term and the same or greater
timestamp, the primary will update its lastCommitted to that
OpTime and notify secondaries of the new lastCommitted by
piggybacking onto other messages, such as heartbeats and
the responses to PullEntries. lastCommitted is also referred
to as the commit point.

3.2.3 Implementation

In MongoDB, instead of initiating continuous RPC’s on the
syncing node, the PullEntries RPC is implemented as a query
on the oplog collection with a "greater than or equal to" filter
on the timestamp field. The query can be optimized easily
since the oplog is naturally ordered by timestamp. Using
database cursors allows the syncing node to fetch oplog en-
tries in batches and also allows the RPC to work in a stream-
ing manner, so that a sync source can send new data without
waiting for a new request, reducing the latency of replication.

To avoid a flood of forwarded UpdatePosition messages,
a server passively batches the received UpdatePosition re-
quests between two rounds of forwarding and consolidates
the requests by only keeping the highest log position for each
server. A server only maintains at most one in-progress Up-
datePosition request to its sync source, so it waits to send the
next request until the previous one returns.

We also introduced Heartbeats RPC, which decoupled
the heartbeat responsibility from Raft’s AppendEntries RPC.
Heartbeats are sent among all replicas, used for liveness
monitoring, commit point propagation and sync source se-
lection (§3.4).

Timestamp 1 2 1 2 1 2 1 2 1 2
Sema []2] E
Sf:ﬁé? KE L1 ]2]

Server C .
(term 3)

Server D . .
(term 3)

Server E | | | | | |
(term 3) 1 3

15 :
Lils]

@ (b) (© (@) ©

EIE}

Figure 2: A corner case
Each box represents an oplog entry with its term (shown in different
colors) in the box. (a) start state with both A and E being primaries
(thick border); (b) Raft only allows replicating (red arrows) from A
to B; (c) MongoDB can replicate from A to B/C/D; (d) C/D report
log positions (orange arrows) with term 3, forcing A to step down.
(e) data replicated in (c) may be rolled back.

3.3 Correctness

Careful readers may have noticed that our data replication
protocol (how PullEntries are processed) only checks the Op-
Times in the logs; it does not check if the sync source has a
higher or equal term than the syncing server. This is differ-
ent from what Raft would do in data replication. The data
replication in Raft is done via AppendEntries RPC, which
contains the term of the primary. AppendEntries can only
succeed if the primary has a term that is not lower than the
secondary’s.

This crucial protocol change means that log replication in
MongoDB will behave differently from Raft. In Raft, if a
server has voted for a higher term in an election, the server
cannot take new log entries sent from an old primary with a
lower term. But in our system, because the PullEntries RPC
does not check the term of the sync source, even if the sync
source is a stale primary, it is possible that after a server has
voted for a higher term, the server could still fetch new log
entries generated by the stale primary.

Figure 2 shows an example of this disparity occurring on
secondaries. Initially, all five servers acknowledged entries
in term 1. Server A first wins the election in term 2 with
votes from Server A/B/C and writes down one entry locally.
Server E then wins the election in term 3 with votes from
Server C/D/E and writes a different entry locally. In Raft, if
Server A broadcasts its AppendEntries, only Server B will
accept the new entry from Server A; Server C/D/E will all
reject.

In MongoDB, however, Server B/C/D could all take the
new log from Server A even after Server C/D have voted for
the new primary in term 3. If A is the sync source of Server
B/C/D, then B/C/D will still accept the new entry with term
2 because the entry is newer than their local ones. Now that
the entry in term 2 has been replicated to the majority of
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servers, it would be considered by Server A as committed
if we did not make further changes to Raft’s rule that a log
entry is committed once the leader that created the entry has
replicated it on a majority of the servers [26]. Later, Server
E’s new entry with term 3 could propagate to all servers and
overwrite the committed entry. Without more changes from
Raft, this would violate safety. 2

To prevent cases like this from happening, we added a new
argument in the UpdatePosition RPC: the term of the syncing
server. The recipient of UpdatePosition will update its local
term if the received term is higher. If the recipient is the
stale primary, seeing a higher term will make the primary
step down before committing anything, thus avoiding any
safety issue. In the above example, when server A receives
UpdatePosition from Server C/D, it will see term 3 and step
down immediately without updating its lastCommitted. Even
though the entry with term 2 is in a majority of servers’ logs,
it is not committed.

Until now, we have assumed it is a secondary that fetches
oplog entries from a stale primary after voting for a new
primary. In fact, this syncing server could be the new primary
itself. Even if a primary (or candidate) has voted for itself
in a higher term, it could still fetch data generated in lower
terms from other replicas, as long as it has not generated new
oplog entries with the new term and appended the entries to
its own oplog. This important difference between MongoDB
and Raft allows MongoDB to preserve uncommitted data as
much as possible during failovers (see more in §4.3).

More formally, the revisions we made to UpdatePosition
are to maintain a key invariant in Raft—Leader Completeness
Property. This property refers to the fact that “if a log entry is
committed in a given term, then that entry will be present in
the logs of the leaders for all higher-numbered terms.” (See
Figure 3 in the Raft paper.) In MongoDB, in order to commit
an entry in term T, the primary in term T has to receive
UpdatePosition RPCs with term T from a majority of nodes.
A later new primary in term U > T must collect votes from a
majority of nodes too. The two majorities must overlap on at
least one voter. This voter is the key to guarantee the safety.
Either the voter sent UpdatePosition in term T to commit
the entry before voting, thus implying the new primary had
the committed entry due to the Log Matching Property; or
the voter voted first and sent UpdatePosition with a term
higher than T, thus leading the primary in term T to step
down without committing the entry. Either way, the Leader
Completeness Property is guaranteed.

In addition to this property, other invariants of Raft still
hold so that one can prove the correctness of our protocol

2Another angle to look at this problem is that, allowing UpdatePosition
from a server with a higher term is actually “counting replicas” rather than
“counting replies”. Raft has explained well why counting replicas is in-
correct in its paper. Indeed, Raft's TLA+ spec in [25] specifies a stronger
definition of “commit” than its paper. The definition in TLA+ is similar to
our modification: an entry (index, term) is immediately committed if it is
acknowledged by a quorum (including the leader) during rerm.

following the proof of Raft. Further, to mechanically verify
the correctness of our system, we have written a formal speci-
fication of the protocol in TLA+ and applied model checking
to it [33].

3.4 Sync Source Selection

Servers learn about the status of other servers, including their
log positions, via Heartbeat RPC. A server chooses its sync
source only if the sync source has newer oplog entries than
itself by comparing their log positions. This condition is
double-checked on receiving PullEntries RPC’s responses in
caserollback (§4.1) occurs on the sync source. As aresult, it’s
guaranteed that the replicas can never form a cycle of sync
sources. Once a server starts to pull entries from its sync
source, it keeps fetching from the source until the source is
not available or a better source shows up. Thus a server should
not change its sync source frequently in a stable environment.

4 Extensions

In this section we introduce a few key features of MongoDB
that extend the elementary design.

4.1 Speculative Execution and Rollback

The standard approach of applying log entries in Raft-based
systems is that a replica waits until the log entries are com-
mitted and then applies the log entries in timestamp order.
MongoDB introduces an optimization that speculatively ap-
plies an oplog entry when it is added to the oplog. If a failover
happens, speculatively applied oplog entries could be deleted
(§3.2.1). In this case, the system needs to roll back the opera-
tions in these entries. The common approach for rollbacks in
databases is through undo or redo logs. The way MongoDB
achieves this is through a consolidated design of the storage
engine (named WiredTiger) and the replication protocol.

The WiredTiger storage engine is a multi-version trans-
actional storage engine that can use oplog timestamps as
versions of data updates. There are three key functions im-
plemented in the storage engine that enable this consolida-
tion. First, the storage engine supports speculative updates,
so multiple versions are visible to clients depending on their
requested consistency levels even if not all of them are com-
mitted. Second, the storage engine provides fast rollback to
a timestamp and discards all updates after that timestamp.
Third, when oplog entries are committed, the storage engine
can be notified to merge all data updates with lower times-
tamps in the on-disk checkpoint and garbage collect those
versions.

When a node needs to roll back, it will determine the
newest oplog entry it has in common with its sync source.
The timestamp of this oplog entry is referred to as ?common-
The node needs to truncate all oplog entries with a timestamp
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after #ommon- In addition to oplog truncation, it must undo the
speculative effects of the operations deleted from the oplog.

Since MongoDB version 4.0, the WiredTiger storage en-
gine has provided the ability to revert the replicated data to
the version at a given timestamp. MongoDB periodically in-
forms the storage engine of a stable timestamp (tsapie), Which
is the timestamp of the commit point known by this node and
must be less than or equal to #.ommon When the node starts
rollback.

To undo the effects of truncated oplog entries, the rolling
back node reverts its replicated data to the version at #ygpe,
then applies the oplog entries forward from 44, up to and
including #common-

4.2 Initial Sync

MongoDB discards stale oplog entries once the storage space
used to store the entries reaches a configurable threshold, by
default 5% of free disk space at startup. In most consensus
systems, such as Chubby and the vanilla Raft, a snapshot of
the database is obtained before discarding stale log entries.
The snapshot will be used by a new server to catch up when
joining the system. However, MongoDB does not rely on a
snapshot mechanism for this initial synchronization, referred
to as initial sync.

The major reason for MongoDB not using snapshots for
initial sync is that MongoDB has a pluggable storage API
that does not require the storage engine to support snapshots.
For example, the initial storage engine before WiredTiger
at its core used mmap 3, which does not support snapshots.
This mmap-based storage engine needs to be supported due
to backward-compatibility.

The initial sync in MongoDB works as follows. First, when
anew server is joining, it chooses a sync source and uses this
sync source for the whole duration of initial sync. Once
the initial sync starts, the syncing node records the current
applied oplog timestamp on the sync source as the initial sync
start point. Then, the new server starts to clone the database
of the sync source by scanning the database. The database
scan gets a cursor at the beginning of each collection and
iterates over the cursor to the end. Note that this clone may
be inconsistent when there are concurrent updates happening
in the system—some cloned values are up-to-date, some may
be obsolete, and some may be missing. The final step is
to fix this inconsistency. The new server will retrieve all
oplog entries on the sync source starting from the initial
sync starting point, and apply the oplog entries locally on the
database. After the database clone, the new server records the
current applied oplog timestamp on the sync source again as
the initial sync end point. Once the new server applies oplog
entries beyond this point, the data becomes consistent and the

3When using this deprecated mmap engine, features including speculative
execution and rollback are implemented in different approaches and are
omitted due to space limitation.

initial sync is complete. If the sync source fails during the
initial sync, the new server chooses a different sync source
and restart the process.

Note that some oplog entries may be applied twice in the
database on the new server. If an operation gets applied on
the sync source after the initial sync begins, the operation’s
effect may be included in the database that the new server
cloned gradually. Later this oplog entry will be applied again
on the new server. To avoid any data inconsistency caused by
this effect, MongoDB requires any sequences of operations
in the oplog entries to be idempotent: applying the same
sequence of operations multiple times will lead to the same
system state.

For operations that change the database states (inserts, up-
dates, deletes, etc.), we changed their semantics during initial
sync to make them idempotent. Inserts in MongoDB will be
ignored if the document id already exists; updates and deletes
will be ignored if the modified document’s id does not exist.
MongoDB supports rich update operations, such as incre-
menting a field’s value in a document. These operations will
be converted to unconditional field assignments by the pri-
mary. For example, for an increment request, the primary will
read the current value from its local database and compute the
result of the increment, and replicate an oplog entry setting
the field to the computed result. As a result, the consistency
between the new server and its sync source is guaranteed.

4.3 Preserving Uncommitted Oplog Entries

After a failover, the uncommitted oplog entries on the previ-
ous primary are likely lost. This would be fine for a different
system because the clients could retry uncommitted updates.
This is, however, an issue for MongoDB because MongoDB
supports fast but weak consistency levels that acknowledge
writes as soon as they are applied on the primary or just
replicated to a fewer number of nodes than a majority. Thus,
a failover could cause a large loss of uncommitted writes.
Though the clients are not promised durability with weak
consistency levels, we still prefer to preserve their uncom-
mitted writes as much as possible.

For this purpose, we introduced an extra phase for a newly
elected primary—the primary catchup phase. The new pri-
mary will not accept new writes immediately after winning
an election. Instead, it will keep retrieving oplog entries
from its sync source until it does not see any newer entries,
or a timeout occurs. This timeout is configurable in case
users prefer faster failovers to preserving uncommitted oplog
entries.

As explained in §3.3, the primary catchup design is only
possible because a primary is allowed to keep syncing oplog
entries generated by the old primary after voting for a higher
term as long as it hasn’t written any entry with its new term.
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4.4 Additional Replica Roles
4.4.1 Arbiters

MongoDB supports a special replica role called arbiter. An
arbiter is like a secondary with respect to voting but does
not store any data to save the cost of storage and replication
while being a tie-breaker in elections. For example, in a
Primary-Secondary-Arbiter deployment, when the primary
crashes, the secondary can take over with the vote from the
arbiter to serve reads and writes. The writes will be applied
speculatively but cannot be committed. 4 If a new node
needs to be added to the replica set to replace the crashed one
through initial sync, the arbiter allows a safe reconfiguration
to change the membership.

4.4.2 Non-Voting Members

In addition to fault tolerance requirements, users often deploy
replica sets to offload reads from the primary or to access a
local data copy with lower latency. For example, users may
maintain some replicas for a heavy analytical workload using
MongoDB’s expressive aggregation framework. These repli-
cas are not deployed for fault tolerance and may have unstable
write performance due to the heavy analytical workload. As
another example, a geo-distributed application may prefer to
read from a nearby datacenter for lower latency, thus need to
deploy dozens of replicas globally. Assuming it’s extremely
rare for more than a few servers to fail at the same time, it
would be unnecessary to count all replicas towards a quorum
for fault tolerance and undesired to wait for a majority of such
many servers to replicate in order to commit writes.

MongoDB introduced Non-Voting Members particularly
for this purpose. Non-voting members replicate data as nor-
mal secondaries, but they do not participate in elections or
count towards a quorum for committing oplog entries, as
opposite to Voting Members. MongoDB supports up to 50
replicas but only up to 7 voting members. Therefore, writes
with strong consistency levels can return faster, as long as
they are committed after replicating to a quorum of voting
members rather than a quorum of all replicas.

Non-voting members work well with the pull-based data
replication model since it’s possible to minimize their perfor-
mance impact on the primary and voting members by offload-
ing their significant oplog read workload to other non-voting
members as much as possible.

4.5 Election Optimizations

4.5.1 Election Handoff

On failovers, secondaries wait for an election timeout (10
seconds by default) to run for election in order to detect that

4This speculative execution can benefit reads with weaker consistency
levels described in [29].

the primary is no longer available. However, on planned
failovers, it is known that the old primary has already stepped
down. MongoDB introduced Election Handoff to shorten
the planned failover time by avoiding the next candidate’s
waiting.

When a primary server steps down on administrator com-
mands, it will pause new writes and wait for any eligible
secondary to catch up its oplog within a user specified time-
out. The primary then chooses this caught-up secondary to
immediately run for election on a best-effort basis. In com-
mon cases, the chosen secondary will win the election and
become the new primary. This election handoff mechanism
will likely shorten the failover time as it does not need the the
election timeout to elapse. This is similar to the leadership
transfer extension in Raft.

The election handoff is leveraged by the planned mainte-
nance on MongoDB Atlas[21], MongoDB'’s hosted database
as a service. Atlas uses a rolling upgrade strategy for ex-
ecuting maintenance or infrastructure operations, such as
applying security patches, scaling up an Atlas cluster, and
upgrading to the latest MongoDB minor versions. As part
of the rolling upgrade, the primary will be stepped down and
shut down for upgrade. The election handoff minimizes the
unavailability window on planned failovers. In fact, the vast
majority of failovers (89.03%) on Atlas are caused by planned
maintenance (§5.2) and can benefit from the election handoff.

4.5.2 Member Priority

It is common that users have a preference for which server
should act as primary, especially in a multi-datacenter setup
where users prefer to deploy the primary in the datacenters
closest to the applications (clients) for lower latency. Mon-
goDB supports setting election priority among servers in the
replica set configuration. If a secondary realizes it has a
higher priority than the current primary, it will start an elec-
tion after a timeout based on its relative priority. The higher
the priority it has, the smaller the timeout value will be. In
this way, the server with the highest priority is likely to win
the election first. If the election fails due to competition but
the server still has a higher priority than the new primary, it
will continue calling for elections until it becomes primary
or the new primary has a higher priority. Setting a server’s
priority to zero prevents it from running for election.

One potential problem is that when the election caused by
a high-priority server fails, it will propagate its larger term
number to the rest of the replica set and force the current
primary to step down. This disruption is particularly serious
when this high-priority server is lagged due to shutdown and
rejoins the replica set after a restart. Until this high-priority
server is caught up on its oplog, it keeps running elections
periodically and causing disruptions. Although other servers
will elect a new primary after each disruption, the system
will be unavailable for at least an election timeout on every
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disruption. To prevent disruptions when a server rejoins the
replica set, Raft describes a pre-vote algorithm in Section
§9.6 in [25], where a candidate only increments its term and
runs the real election if it learns from a majority of nodes
that they would grant their votes. MongoDB implements this
algorithm with an election dry-run. When a stale candidate
with a higher priority starts an election even though it won’t
be able to win, the candidate will fail during the election dry-
run, protecting the existing primary from being disrupted by
a higher term.

Note that in rare cases such as network partitions, it could
happen that two nodes repeatedly initiate elections and cause
liveness issues. This is a different issue from the priority
design and having priorities does not make it worse. In these
cases, the dry-run mechanism cannot address the issue com-
pletely, as liveness in asynchronous networks is impossible to
guarantee [9]. In reality we did not find this to be a problem.

4.6 Read-only Operations

A strawman solution to support linearizable reads is to turn
read operations into log entries similarly to treating write
operations. MongoDB’s optimized approach is that if the
primary has other concurrent oplog entries to replicate, the
primary can piggyback the read linearization point with those
entries. Note that this optimization is different from weakly
consistent reads although they both skip turning read opera-
tions into oplog entries. Even though weakly consistent reads
are supported on both primary and secondary nodes and they
do not need to wait for synchronization between nodes, lin-
earizable reads can only happen on the primary and need to
wait for a roundtrip of synchronization.

5 Evaluation

Our evaluation section has two parts. First, we benchmarked
the system under different configurations on Amazon EC2
and report the performance measurements (§5.1). Second,
we collected metrics from our own cloud platform, MongoDB
Atlas [21], and report the analysis of the operational data on
failovers (§5.2).

5.1 Benchmarks on EC2
5.1.1 Setup

Our tests use AWS mS5d.2xlarge instances, each with 8 vC-
PUs, 32GB memory, and a local SSD. We tested 5-way repli-
cation with 5 server VMs and 2 client VMs. 3 servers are
deployed in the US East (N. Virginia) region and 2 servers
in the US West (Oregon) region. The primary is always
deployed in the US East region.

We use the following benchmark for our main tests. Each
client thread continuously and randomly updates an entire

document out of 1 million documents containing one random
string field of 1000 bytes in a closed loop. These updates will
not return until they are committed. We vary the number of
client threads to control the offered load in the system.

To measure the impact of allowing secondaries to sync
from other secondaries, we run the tests with two settings:
(1) chaining enabled and a secondary in the US West region
forced to sync from another secondary in the same region
while all other secondaries syncing from the primary, and
(2) chaining disabled and all secondaries syncing from the
primary, which mimics similar data transmission paths to
vanilla Raft.

In addition to the above basic benchmarks, we also tested
two interesting cases: (1) a failure recovery test in which we
crash the primary, wait for the new primary to step up, and
then recover the old primary; (2) a comparison with a previ-
ous version of MongoDB that uses a deprecated replication
protocol not based on known consensus protocols.

Appendix B has an additional TPCC benchmark.

5.1.2 Benchmark Results

Figure 3 and 4 respectively show the 50-percentile and 90-
percentile latency vs. throughput of both chaining enabled
and disabled cases. Their performance is almost the same.
However, as shown in Figure 5, the cross-datacenter traf-
fic is halved by leveraging chaining, so is its cost. Using
$0.01~3%0.147/GB (EC2’s pricing) to estimate, the savings of
chaining in this test is about $300~$5,000 per month.

80 1 =@=chaining disabled
=@=chaining enabled

60

40

50% Latency (ms)

201

2000 4000 6000 8000 10000 12000
Throughput (operations/s)

Figure 3: 50-percentile latency vs. throughput of chain-
ing disabled and enabled

One may expect that with chaining enabled the system
should be able to achieve a higher maximum throughput be-
cause the primary would have more available CPU resources
for clients. The system is indeed bottlenecked by the pri-
mary’s CPU at the maximum throughput in our tests and
most of the CPU is used to serve clients. Each client request
is handled by a separate OS thread, so there are a few thousand
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Figure 4: 90-percentile latency vs. throughput of chain-
ing disabled and enabled
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Figure 5: Cross datacenter traffic with chaining disabled
and enabled

client threads in our tests. We observed more than 250k con-
text switches per second on the primary consistently when
the system is saturated. The heavy interleaving of threads
indicates that the performance will not scale linearly given
extra available CPU time. Meanwhile, each secondary oplog
read takes one thread on the primary. In fact, a secondary in
a steady replication state only consumes about 5% of a sin-
gle CPU core on the primary in our experiments. Therefore
we did not observe throughput improvement with chaining
enabled when the primary CPU is the bottleneck.
Nevertheless, if the network bandwidth between nodes is
the bottleneck, we expect that enabling chaining will greatly
improve the throughput. In our tests, we did not observe
throttled bandwidth across datacenters on AWS EC2. But
it is reported that the bandwidth of the cloud could be af-
fected by time, space, and other factors such as VM instance
types [16]. Besides, our users could deploy MongoDB in
other environments with networks that may be less reliable
and have less bandwidth than EC2. Therefore, we conducted
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Figure 6: 50-percentile latency vs. throughput of chain-
ing disabled and enabled with limited 200Mbps band-
width on primary

12000 1

10000 1

8000 1

6000 1

4000 1

Throughput (operations/s)

2000 1

O 4
00:00:00

00:00:20 00:00:30  00:00:40  00:00:50

Time

00:00:10

Figure 7: Throughput during failover

an additional experiment with 3 nodes, where the primary’s
bandwidth is limited using the tc tool. The result is in
Figure 6) and it shows that when the network bandwidth is
the bottleneck, chaining can drastically improve the system
throughput as expected.

5.1.3 Failover Tests

The failover tests are conducted with all 5 replicas deployed
in the same datacenter. In each test, we run 64 clients con-
currently and crash the primary after the system runs for 10
seconds in a stable state. The timeout set for the system to
elect a new primary is 10 seconds. After the new primary
takes over and the system is again in a stable state, we re-
cover the old primary. The old primary will catch up by
synchronizing the missing oplog entries.

Figure 7 shows the throughput of the system during failover
when chaining is enabled. The new primary steps up after
losing the old primary over an election timeout. The clients
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can discover the new primary and issue writes to it imme-
diately, thus the throughput resumes to the level before the
failover. When the old primary is recovering (at 40s), it
fetches the missing oplog entries from another secondary in
this case. In our tests not shown here with chaining disabled,
the old primary catching up its oplog from the new primary
increases the workload on the new primary but doesn’t affect
the performance since the new primary isn’t saturated.

5.1.4 Comparing with Previous Implementation

We compare the latest released version 4.4 with a previous
MongoDB version 3.6 released in 2017. Version 3.6 is the last
version that supports the old and deprecated replication proto-
col, which works in most cases but is unproven. Additionally,
it has severe limitations due to its strong assumptions about
the deployment environment: all messages must be replied
within 30 seconds or otherwise the nodes must have failed.
Thus, it does not tolerate faults like network partitions and
could suffer from a "split-brain" if such faults happen.

The main advantage of our current protocol is fault toler-
ance as it makes fewer assumptions of the deployment. In
most cases, we observed comparable performances, as shown
in Figure 8. The performance of the newer version is better
when the system isn’t saturated. We believe this is not only
because of the algorithmic and engineering improvements of
the replication system, but also thanks to optimizations of
many other parts of the server, e.g., journaling.

I \Version 3.6 with Deprecated Protocol

o/ |
175% Version 4.4 with Raft-based Protocol

150% A
125% 1
100% 1
-« IR
-

25% A

2 8 32 64 128 256 512 1024
Number of Clients

Relative Throughput Performance

0% -

Figure 8: Relative throughput comparison between dep-
recated and Raft-base protocols

5.2 Metrics on MongoDB Atlas

To examine the performance of failover and its impact in
production, we analyzed the failover metrics of MongoDB
instances deployed on MongoDB Atlas, a hosted database as
a service. When the data was collected in June 2020, almost
all replica set instances were on the latest major releases:

3.6.18 (26.86%), 4.0.18 (44.17%) and 4.2.6 (28.54%). The
vast majority of failovers (89.03%) are caused by planned
maintenance, 6.15% by priority takeover (§4.5.2) and 4.82%
by election timeout. We focused on those caused by planned
maintenance and election timeout to measure the impact of
expected and unexpected failovers.

5.2.1 Planned Maintenance

As part of rolling upgrade for planned maintenance on Mon-
goDB Atlas, the old primary will be stepped down via a com-
mand. The stepdown command pauses new writes, waits for
any eligible secondary to catch up and then asks the eligible
secondary to step up, as discussed in §4.5.1. We measure the
time duration from starting the election to when the new pri-
mary is available for new writes, referred to as Local Write
Unavailability, and from starting election to when the first
no-op write on stepup gets committed, referred to as Ma-
Jjority Write Unavailability. Note that the entire unavailable
windows perceived by clients are longer since they start from
when the old primary pauses writes. The extra unavailability
window beyond our measurements heavily depends on the
workload and is less comparable across replica sets.
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Figure 9: Unavailability due to planned maintenance

Figure 9 shows the cumulative frequency of local and ma-
jority write unavailability up to 95th-percentile, 0.37 seconds
and 3.08 seconds respectively. Since an election only in-
volves a few round-trips in the same data center, a candidate
can finish its election quickly and start to accept new writes.
However, it takes longer for other nodes to learn there is a new
primary and start to sync from it directly or indirectly. We can
observe two clusters of duration for majority writes: around
1 and 2 seconds. We believe this is due to the implemen-
tation of sync source selection based on heartbeats. We are
actively working on delivering performance improvements in
this area to all supported versions.
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5.2.2 Election Timeout

When a secondary cannot see a primary for a given election
timeout, it runs for election. Failovers caused by election
timeout are the fault-tolerant scenarios for which the repli-
cation system is designed. We measure the same local and
majority write unavailability as above. However, both mea-
surements include the primary catchup phase (§4.3) which
involves more work in election timeout cases, so both mea-
surements are longer than that of planned maintenance. By
contrast, it is essentially a no-op in planned maintenance
since the old primary has waited already. Additionally, over-
loaded systems are a common reason of failover, which leads
to longer primary catchup phases.

The perceived unavailable windows by clients are also
longer since they start from when the old primary becomes
unresponsive. Usually, they add about an election timeout
(10 or 5 seconds on Atlas) to what we measured.
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Figure 10: Unavailability due to election timeout

As shown in Figure 10, 95% of failovers due to election
timeout start to accept writes within 6.41 seconds after elec-
tion, and commit their first majority writes within 10.24 sec-
onds. The sharp steps are also aligned with the default 2
second heartbeat intervals.

5.2.3 Replication Network Traffic

MongoDB'’s consensus protocol allows flexible replication
paths and can save cross-datacenter traffic by allowing sec-
ondaries syncing from others from the same datacenter. We
examined the replication network traffic on Atlas to estimate
the cost of cross-datacenter traffic.

Figure 11 shows the distribution of daily replication net-
work traffic on secondaries on Atlas during a week. While
some replica sets have no writes and may mainly be used
for reads, there are some others that generate gigabytes or
terabytes of data. 50% of replica sets generate less than
8.08MB per day, and 95% generate less than 7.94GB per day.
Figure 12 shows the distribution of the same data weighted
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Figure 11: Distribution of daily replication network traf-
fic
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Figure 12: Weighted distribution of daily replication net-
work traffic

by the daily replication network traffic. It is obvious that
a small portion of replica sets generate disproportionately
large amount of replication traffic. In fact, the top 5% of all
replica sets account for more than 92.6% of all replication net-
work traffic. Given the high traffic volume, it is valuable for a
multi-node cross-datacenter deployment to minimize the cost
of cross-datacenter traffic from the primary. The cost could
be expensive (e.g., $0.01~$0.147 per GB on AWS [1]). Mon-
goDB made it possible to minimize cross-datacenter traffic by
allowing syncing from another node in the same datacenter
instead of the primary.

6 Related Work

Replication and consensus are both very well-studied areas.
This section reviews related works in two main categories:
linearizable replication in production databases, and devel-
opments in consensus algorithms.
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Linearizable replication in production databases. Many
production databases build their replication systems via con-
sensus protocols, mostly using Paxos or Raft. One recent
popular Paxos-based system is Google’s Spanner [7], and
examples of Raft-based systems include TiDB [32], Re-
thinkDB [28], CockroachDB [6, 31]. Another approach with
similar data replication paths is the primary-backup scheme
with external membership management (e.g., a consensus
service). Recent database systems of this type include Au-
rora [35] and FaRM [8, 30]. To the best of our knowledge,
these systems do not support pull-based data transfer in their
data replication paths.

Another important scheme is Chain Replication (CR) [27].
It can achieve a chaining topology similar to MongoDB. The
differences between CR and our proposed scheme are three-
fold. First, our scheme can support many types of topology
and chaining is one typical use case. Second, in our scheme
a request can commit after replicating to a majority, while in
CR arequest needs to replicate to all nodes before it commits.
Third, similar to primary-backup schemes, CR needs a third-
party to perform a safe leader (head) change. Nevertheless,
CR can perform consistent read requests on the tail node,
which can improve the system performance, while common
consensus-based systems cannot.

CORFU [3] and Delos [2] have the clients (i.e., the learner
role in Paxos) pull logs from the server; our approach takes
one step further and has the servers (i.e., the acceptor role)
pull logs from each other. During this process, we found that
at least for Raft, modifying the protocols to enable servers to
pull logs from other servers is challenging.

Study in consensus algorithms. Except for searching for
more understandable basic consensus protocols, the develop-
ments in consensus algorithms can be classified into two cat-
egories: 1) optimizations that only require a minimal change
to an existing protocol (usually Paxos); 2) new protocols built
from scratch or heavily modifying a previous protocol.

The first category of works, in our experience, is closer to
our needs in practice. PigPaxos [5] has a group of secon-
daries relay the messages from the primary to alleviate the
primary bottleneck, which achieves similar flexibility as we
do. Reconfiguration [18] of a replication group is a major
challenge in MongoDB and we developed a refined version of
reconfiguration in the latest release 4.4. Leases [10, 22] pro-
vide a way to allow consistent local reads in an efficient way.
We are investigating this direction for future improvements.
One thing we need to point out is that incorporating these or
other optimizations of this category into MongoDB may be
more difficult than into other systems that use stock Paxos
protocols, because our protocol is a heavily modified version
of Raft. However, it has been demonstrated [36] that such
porting of optimizations can be achieved by drawing a one-
to-one correspondence between each step of these protocols,
e.g., by using refinement mapping.

It is an interesting and open question how MongoDB can

benefit from the optimizations in the second category of
works. These optimizations are often disruptive but effective.
For example, to improve the performance for geo-replication,
one can shard the log space [20], use fast quorums [23], or
rethink the layering between replication and the rest of the
system [15, 19, 37]. Replaying these works in MongoDB
may require more efforts because it could suggest a complete
reconstruction of the system.

7 Conclusion

In this paper we presented the design and implementation of
the fault-tolerant and linearizable replication system in Mon-
goDB. We proposed a novel pull-based consensus protocol
that is a modification of Raft. With this pull-based scheme,
MongoDB allows a more flexible control of data transmission
paths. We described how this consensus protocol works, how
MongoDB integrates it with the rest of the replication system,
and the extensions of the replication protocol that support our
rich feature set. We reported our evaluation on EC2 and our
data analysis on MongoDB’s cloud platform, and concluded
that MongoDB can replicate data efficiently and reliably.
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Appendix A: Comparison between Raft
and MongoDB Consensus

Raft Protocol

Minor changes are marked in italics, e.g., changing from index to
timestamp, comparison of OpTimes (<term, timestamp> pairs) and
introducing heartbeats; major behavioral changes are marked in red.

Persistent state on all servers:

(Updated on stable storage before responding to RPCs)

currentTerm latest term server has seen (initialized to O on

first boot, increases monotonically)

candidateld that received vote in current term (or

null if none)

log[] log entries; each entry contains command for
state machine, and term when entry was received
by leader (first index is 1)

Volatile state on all servers:

commitIndex index of highest log entry known to be committed

(initialized to 0, increases monotonically)

index of highest log entry applied to state ma-

chine (initialized to 0, increases monotonically)

Volatile state on leaders:

(Reinitialized after election)

nextIndex[] for each server, index of the next log entry to
send to that server (initialized to leader last log
index + 1)

matchIndex[] for each server, index of highest log entry known
to be replicated on server (initialized to 0, in-
creases monotonically)

AppendEntries RPC

(Invoked by leader to replicate log entries; also used as
heartbeat.)

votedFor

lastApplied

Arguments:
term leader’s term
prevLogIndex index of log entry immediately preceding new

ones
prevLogTerm term of prevLoglndex entry
entries[] log entries to store (empty for heartbeat; may
send more than one for efficiency)
leaderCommit leader’s commitIndex

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching pre-

vLoglIndex and prevLogTerm
Receiver implementation:

1. Reply false if term > currentTerm

2. Reply false if log doesn’t contain an entry at prevLogIndex
whose term matches prevLogTerm

3. If an existing entry conflicts with a new one (same index
but different terms), delete the existing entry and all that
follow it

4. Append any new entries not already in the log

5. If leaderCommit < commitlndex, set commitlndex =
min(leaderCommit, index of last new entry)

RequestVote RPC

Invoked by candidates to gather votes.

Arguments:
term candidate’s term
candidateld candidate requesting vote

lastLogIndex index of candidate’s last log entry
lastLogTerm term of candidate’s last log entry
Results:
term currentTerm, for candidate to update itself
voteGranted true means candidate received vote
Receiver implementation:

1. Reply false if term < currentTerm

2. If votedFor is null or candidateld, and candidate’s log is at

least as up-to-date as receiver’s log, grant vote

Rules for Servers

All Servers
* If commitlndex > lastApplied: increment lastApplied, ap-
ply log[lastApplied] to state machine
» If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower
Followers
* Respond to RPCs from candidates and leaders
* If election timeout elapses without receiving AppendEn-
tries RPC from current leader or granting vote to candidate:
convert to candidate
Candidates
* On conversion to candidate, start election:
— Increment currentTerm
— Vote for self
— Reset election timer
— Send RequestVote RPCs to all other servers
* If votes received from majority of servers: become leader
* If AppendEntries RPC received from new leader: convert
to follower
o If election timeout elapses: start new election
Leaders
* Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts
* If command received from client: append entry to local
log, respond after entry applied to state machine
e If last log index > nextIndex for a follower: send Appen-
dEntries RPC with log entries starting at nextIndex
— If successful: update nextIndex and matchIndex for
follower
— If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry
* If there exists an N such that N > commitIndex, a majority
of matchIndex[i] > N, and log[N].term == currentTerm:
set commitIndex = N
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MongoDB Consensus Protocol

Persistent state on all servers:

(Updated on stable storage before responding to RPCs)

currentTerm latest term server has seen (initialized to O on

first boot, increases monotonically)

candidateld that received vote in current term (or

null if none)

log[] log entries; each entry contains command for
state machine, timestamp and term when entry
was received by leader

Volatile state on all servers:

lastCommitted OpTime of highest log entry known to be com-

mitted (initialized to minimum, increases mono-

tonically)

OpTime of highest log entry applied to state ma-

chine (initialized to last log entry’s OpTime, in-

creases monotonically)

lastPosition[] for each server, OpTime of highest log entry
known to be replicated on that server

votedFor

lastApplied

RequestVote RPC (Omitted)

... The same as Raft’s RequestVote RPC except changing index
to timestamp . . .

PullEntries RPC

(Replicate log entries from its sync source.)

Arguments:
prevLogTimestamp
timestamp of last fetched log entry.
Results:
entries[] log entries with a timestamp greater than or equal

to prevLogTimestamp
commitPoint sync source’s lastCommitted
Receiver implementation:

1. Return the log entries with a timestamp greater than or
equal to prevLogTimestamp. Could be empty if no such
entry exists.

Sender implementation after RPC call:

1. If returned entries is empty or last OpTime in entries is less
than last OpTime in log, select a new sync source and retry
PullEntries.

2. If last log entry conflicts with the first of entries (due to
different OpTimes)

(a) Traverse the log on sync source backwards until a
common entry is found

(b) Delete all existing entries following the common en-
try

(c) Roll back the data to the state right after the common
entry

3. Append any new entries not already in the log

4. If commitPoint > lastCommitted, set lastCommitted =
min(commitPoint, OpTime of last new entry)

UpdatePosition RPC

(Sending latest positions of all known nodes to sync source.)
Arguments:
term currentTerm, for leader to update itself
position[] lastPosition[] on the sender
Results: None
Receiver implementation:

1. Merge position and lastPosition to record the highest known

position for each member
2. Send UpdatePosition RPC to sync source if the receiver has

one
Heartbeat RPC

(Used for liveness monitoring, commit point propagation, and
sync source selection.)

Arguments:

term sender’s term

senderld sender’s node Id

role sender’s role

position sender’s last log entry’s OpTime

commitPoint sender’s lastCommitted
Receiver implementation
1. Record the role and the current time of the last heartbeat
for senderld for liveness monitoring
2. Update lastPositions[senderld] to position if position is
higher, for sync source selection
3. If commitPoint > lastCommitted, set lastCommitted =
min(commitPoint, OpTime of last new entry)

Rules for Servers

All Servers

* Apply log entries speculatively when appending them to
log

» If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower

Followers

* Respond to RPCs from candidates and leaders

 If election timeout elapses without receiving Heartbeat
RPC from current leader: convert to candidate

Candidates
¢ On conversion to candidate, start election:
— Increment currentTerm
— Vote for self
— Reset election timer
— Send RequestVote RPCs to all other servers
* If votes received from majority of servers: become leader
* If election timeout elapses: start new election
Leaders

* If command received from client: append entry to local
log, respond after lastCommitted > entry’s OpTime.

o [f there exists an entry such that entry.OpTime > last-
Committed, a majority of lastPosition[i] > entry.OpTime,
and entry.term == currentTerm: set lastCommitted = en-
try.OpTime
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Appendix B: TPC-C Experiments

Setup. This section uses 3-way replication with 3 server
VMs and 1 client VM. All VMs are deployed in the same
Availability Zone. Each client thread continuously inserts
documents of 1000 bytes in a closed-loop. We vary the
number of client threads to control the offered load in the
system.

chaning disabled chaining enabled
50% 95% 50% 95%
throughput throughput
(ops/s) latency latency (ops/s) latency latency
(ms) (ms) (ms) (ms)
DELIVERY 58.16 144.14 25772 60.21 12994 24722
NEW_ORDER 650.33  70.68 153.64 675.33 66.2 141.09
ORDER_STATUS 58.01 3032 56.17 59.71 3295  62.54
PAYMENT 628.51 37.04 169.28 651.46 3791 171.52
STOCK_LEVEL 58.46 7.25 22.6 60.28 749  23.88
TOTAL 1453.47 1506.98

Table 1: Results of an adapted TPCC benchmark. The
benchmark denormalizes the data and leverages MongoDB
query language and transaction semantics to be consistent
with MongoDB best practices [14]. The test is run with 100
client threads and 100 warehouses on the same replica set set-
ting as above without any bandwidth limit. Since the TPCC
workload is CPU-bound, the performances of both chain-
ing enabled and disabled settings are very close. Chaining-
enabled case performs slightly better because it offloaded one
secondary’s oplog reading from the primary to a secondary
and saved the CPU on the primary. The network was not
saturated by replication: the chaining-disabled primary sent
15.56 MB/s in total over the network, including serving client
requests and 4.05 MB/s to each secondary for oplog replica-
tion, while the chaining-enabled primary sent 11.70 MB/s in
total. The gap of primary’s network traffic is aligned well
with the saved oplog replication traffic.
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