
A Proof of Correctness for Rococo

Shuai Mu1,2, Wyatt Lloyd3,4, Jinyang Li2

This is an extension to OSDI’14 paper Extracting more concurrency from distributed transactions.

1Tsinghua University, 2New York University,
3University of Southern California, 4Facebook

NYU-TR-2014-970
Last revision: January, 2018

Abstract: This paper presents a proof of correctness for Rococo, a new concurrency control protocol
for distributed transactions. Rococo can achieve strict serializability without the cost of blocking or
aborting. It executes a transaction as a collection of atomic pieces, each of which commonly involves
only a single server. Servers first track dependencies between concurrent transactions without actually
executing them. At commit time, a transaction’s dependency information is sent to all servers so they
can re-order conflicting pieces and execute them in a serializable order.

1



1 Introduction

Large distributed online transaction processing (OLTP) systems require concurrency control to guarantee
strict serializability [3, 1], so that websites running on top of them can function correctly.

While concurrency control is a well-studied field, traditional protocols such as two-phase locking (2PL)
and optimistic concurrency control (OCC) perform poorly when workloads exhibit a non-trivial amount of
contention. The performance drop is particularly pronounced when running these protocols in a distributed
setting.

In [2], we have presented Rococo (ReOrdering COnflicts for COncurrency), a distributed concurrency
control protocol that extracts more concurrency under contended workload than previous approaches. Ro-
coco achieves safe interleavings without aborting or blocking transactions using two key techniques: 1)
deferred and reordered execution using dependency tracking; and 2) offline safety checking based on the
theory of transaction chopping.

In this accompanying technical report, we formally specify the protocol of Rococo and prove its cor-
rectness.

Disclaimer: The proof in this technical report includes Rococo with optimizations but does not cover
other useful extensions such as read-only transactions, merged pieces, failure recovery and garbage collection.

2 Overview

To use Rococo, programmers must structure their transactions as a collection of atomic pieces, each typically
involving data access on a single server. Before any runtime execution, Rococo runs an offline checker to
determine if a particular mix of transactions are safe (i.e. reorderable) for Rococo at runtime or not.

At the runtime, the Rococo protocol uses a set of coordinators to coordinate the execution and commit
of transactions on behalf of clients. It runs in two phases. In the first phase, called start phase, a coor-
dinator sends the pieces to their involved servers and establishes a provisional order of execution on each
server. Servers typically defer execution of the pieces until the second round so they can be reordered if
necessary. Servers complete the first phase by replying to the coordinator with dependency information that
indicates the order of arrival for conflicting pieces of different transactions. The coordinator aggregates this
dependency information collected from servers. In the second phase, called commit phase, a coordinator
distributes the aggregated dependency information to all involved servers of a transaction. Servers aggregate
the received information into its local dependency graph. They may also optionally ask other servers for
missing dependency information. Using the complete dependency information, servers can recognize if the
pieces of concurrent transactions arrived in a strictly serializable order in the first phase. If so, they execute
pieces in that order. If not, servers reorder the pieces deterministically and then execute them. In both
cases, Rococo is able to avoid aborts and commits all transactions.

3 Preliminaries

Before describing the protocol in details, we explain a few preliminary concepts.

Piece

A transaction is made up of many pieces, each of which represents logic that can be executed atomically on
a single server. In our implementation, piece atomicity is achieved through single threaded local database
execution. Rococo requires each piece to have a known read/write set prior to its execution so that a server
can accurately infer conflict information while still deferring piece execution.

Dependency graph dep

Each server S maintains a dependency graph, S.dep. In this graph, each vertex represents a transaction,
and each edge represents the arriving order of two conflicting pieces during the start phase for a pair of
transactions. We use T ′ → T to denote that T ′ immediately precedes T (and T ′ and T have conflicting
accesses to a data item). We use T ′ T to denote that T ′ is an ancestor of T , i.e. there exists a path

2



T ′ → ...→ T in S.dep. In particular, we use T ′
i→T to refer that the edge between T ′ and T are annnotated

as “i(mmediate)”. T ′
i
 T means that the edges on the path between T ′ and T are all annotated as “i”.

Similarly, T ′
d→T and T ′

d
 T refers to that the edges are annotated as “d(eferrable)”.

Transaction Status

The dependency graph contains the status information of a transaction, which can be one of the following:

• UNKNOWN. This is a placeholder status for a transaction that does not have enough information in
the dependency graph. It happens in graph propagation when a server shares only a subset of graph.

• STARTED. When a server receives the start request of a piece, which belongs to a transaction T , it
sets T ’s status to be STARTED.

• COMMITTING. When a server receives the commit request of a transaction T , it changes T ’s status
to COMMITTING.

• DECIDED. Once a server has received complete dependency information that allows it to guarantee a
strictly serializable order of execution for transaction T , it sets T ’s status be be DECIDED.

We define an ordering among these four status flags: UNKNOWN < STARTED < COMMITTING <
DECIDED. This order is useful for aggregating the status information, e.g. when a server receives a commit
request. In particular, the server always keeps the highest status flag seen for a particular transactions. The
simplified protocol only uses STARTED and COMMITTING flags. The optimized protocol uses all.

4 Simplified Rococo

4.1 Pseudocode

Coordinator C::process txn(T )

1 // the start phase
2 for each piece pi in T do
3 wait until all input for pi is ready
4 (depi, outputi) := Si.start txn(pi)
5 dep := dep union(dep, depi)
6 output := output ∪ outputi
7 dep[T ].status := COMMITTING
8 // the commit phase
9 for each server Sj involved in T do

10 output := output ∪ Sj .commit txn(T , dep)

11 reply output

Algorithm 2: Server S::start txn(p)

12 S.dep[p.owner].status := STARTED
13 for each p′ in S.dep that conflicts with p do
14 if p.immediate then

15 add p′.owner
i→p.owner into S.dep

16 output := execute(p)

17 else

18 add p′.owner
d→p.owner into S.dep

19 output := nil

20 reply (S.dep, output)

3



Algorithm 3: Server S::commit txn(T , dep info)

21 S.dep := dep union(S.dep, dep info)
22 for each T ′ T in S.dep and S.dep[T ′].status = STARTED a do
23 if T ′ does not involve S then
24 dep′ := S′.ask txn(T ′) where S′ is a server involved in T ′

25 S.dep := dep union(S.dep, dep′)

26 wait until S.dep[T ′].status ≥ COMMITTING

27 TSCC := strongly connected component(T , S.dep)

28 for each T ′ /∈ TSCC and T ′ T do
29 if T ′ involves S then
30 wait until T ′.finished = true

31 deterministic topological sort(T SCC)

32 for each T ′ in T SCC do
33 if T ′ involves S and T ′.finished = false then
34 for each deferred p′ of T ′ do
35 T ′.output := T ′.output ∪ execute(p′)
36 T ′.finished := true

37 reply T.output

aOnce the S.dep has changed during the loop, the loop condition should be recalculated.

Algorithm 4: Server S::ask txn(T )

38 wait until S.dep[T ].status ≥ COMMITTING
39 reply S.dep

Algorithm 5: Operator dep union (dep, dep′)

40 for each T ′→T in dep′ do
41 append T ′→T into dep

42 for each T in dep′ do
43 if dep[T ].status < dep′[T ].status then
44 dep[T ].status := dep′[T ].status

4.2 Proof

In order to prove that Rococo is serializable, we need to argue that the execution of Rococo does not
cause any cyclic serialization graphs. And then we prove Rococo is strictly serializable by proving that the
serialization graph it generates preserves natural time order.

Serialization graph: the serialization graph (a.k.a. conflict graph) is a directed graph corresponding
to some global execution schedule. Each vertex represents a transaction. Each directed edge represents an
ordered conflict: if transactions Ti and Tj have conflicting accesses to the same item (i.e. one access is write)
and the corresponding data access of Ti executes before that of Tj , then the serialization graph contains
Ti→Tj .

To begin with, all conflicting accesses reflected in the serialization graph are observed by some server.
And we use this basic property throughout the proofs.

Lemma 1 For any pair of transactions Ti→Tj in the serialization graph, Ti contains a piece pi and Tj
contains a piece pj, such that pi and pj has conflicting access to certain items and there exists a server Si,j

which executes pi before pj.

4



Proof: The lemma is obvious by the definition of serialization graph. If we think of pieces as sub-
transactions, we can draw serialization graph of pieces. Because we assume atomic execution on pieces,
the serialization graph of pieces must be acyclic, i.e. one piece must be executed before another.

A similar property holds true for servers’ dependency graphs, except that the directed edges there reflect
arrival orders instead of execution orders.

Lemma 2 If any Ti→Tj appears in any server’ dependency graph, then Ti contains a piece pi and Tj
contains a piece pj such that pi and pj have conflicting access on certain items and there exists a server Si,j

which has processed the start request of pi before pj.

Proof: This lemma is also obvious according Rococo’s protocol specification. The only tricky part is that
the server observes Ti→Tj does not has to be Si,j because the dependency information may be propagated
to other servers. Therefore, a dependency information on a server may either comes from tracking or
propagating. However, there must be initially some server that establishes this dependency by tracking, and
that server is Si,j .

About the relationship between the dependency graph and conflicting pieces, the following property is
obvious according to the specification.

Lemma 3 If the start request of two conflicting pieces pi (of transaction Ti) and pj (of transaction Tj)
arrive at the same server, and pi arrives ealier than pj, the server should observe Ti Tj after it processes

the start request of pj. In particular, if pi and pj are immediate pieces. The server should observe Ti
i
 Tj

after it processes the start request of pj.

Proof: Obvious.

The immdiacy propagation in the offline checking ensures the following critical property, which allows us
to use a simple way to labelize the edges in both serialization graph and dependency graph.

Lemma 4 For any two conflicting pieces pi and pj from different transactions, they must both be immediate
pieces or both be deferrable pieces.

Proof: This lemma is guaranteed by offline checking. In offline checking, if two pieces may conflict with
each other, and one of them is immediate, we should change the other to immediate too.

Lemma 4 allows us to use i or d to labelize the edges in the serialization graph as well. According to

Lemma 1, we can use Ti
i→Tj to represent the case that the conflicting pieces pi and pj are immediate pieces,

and Ti
d→Tj to represent the case that pi and pj are both deferrable pieces. We will refer

i→ as immediate

edge, and
d→ as deferrable edge.

Similarly, the dependency tracking labelization is also supported by Lemma 4. We can also use Ti
i→Tj

and Ti
d→Tj to imply that the conflicting pieces pi and pj are immediate pieces or deferrable pieces. Notice

that the edges in serializaiton graph and dependency graph refer to different things, the serialzation graph
reflects the actual execution orders, and the dependency graph reflects the piece arrival (processing) orders.

Combined with the above ways to represent immediate/deferrable relations, our offline checking also
guarantees another important property about immediate relations.

Proposition 1 The serialization graph cannot contain a cycle of transactions all connected by immediate
edges.

Proof: We will prove by contradiction. Assume there exists a cycle δ in the serialization graph, such that

all edges in δ are immediate edges. Suppose δ = T1
i→T2

i→... i→Tn. We will prove that the existence of δ leads
to some contradiction in the offline checking.

1. According to Lemma 1 and Lemma 4, for any Ti
i→Tj in δ, Ti contains an immediate piece, which can be

denoted by pi
′, Tj contains an immdiate piece, which can be denoted by pj , such that pi

′ and pj conflicts
on a server Si,j , and pi

′ is executed before pj on Si,j .

5



2. For δ = T1
i→T2

i→... i→Tn, we can expand it by identifing the conflicting pieces between each pair of transac-

tions. Let T1 be represented by p1..p1
′, T2 represented by p2..p2

′, etc. Then δ = p1..p1
′ i→p2..p2′

i→... i→pn..pn′
i→p1..p1′. To clarify, each “..” in pi...pi

′ refers nothing else but that pi and pi
′ belongs to the same trans-

action (not that pi should execute before pi
′).

3. There exists at least a pair of transactions {pi, pi′} that pi and pi
′ are not the same piece, otherwise we

will have a cycle in the serialization graph of pieces, which is not possible because each piece is executed
atomically at a server(Explained in Lemma 1). The pair {pi, pi′} suggests an S-edge in SC-graph between
pi and pi

′.

4. In the cycle p1..p1
′ i→p2..p2′

i→... i→pn..pn′
i→p1..p1′. Each pi

′ i→pj suggests an i-typed C-edge in SC-graph.

5. The above C-edges and S-edge(s) form an SC-cycle of which all C-edges are i-typed in SC-graph, which
is a contradiction to our offline checking.

6. Q.E.D.

As each server may have only different dependency graph, if we consider the collective dependency graph
from all servers, it has similar properties. Because we assume the dependency tracking on each server is also
atomic, the collective dependency graph also does not contain any immdediate cycle.

Proposition 2 The collective dependency graph does not contain a cycle of transactions all connected by
immediate edges.

Proof: Similar to Proposition 1.

To start the proof for serialization, we first show the relationship between the serialization graph and
servers’ dependency graphs.

Proposition 3 For two transactions Ti and Tj, if Ti→Tj appears in the serialization graph, then there exists
a server that is involved in both Ti and Tj, and has Ti Tj in its dep before it sets the finish flag of Tj to
true (line 68).

Proof: According to Lemma 1, there exists a server Si,j who executes a conflicting piece pi (which belongs
to Ti) before pj (which belongs to Tj). By Lemma 4, pi and pj both are immediate pieces or both are
deferrable pieces. There are two cases w.r.t. the arriving order of the start requests of pi and pj on server
Si,j .
1. Case: pi arrives earlier than pj on Si,j .

1.1. In this case, according to Lemma 3, server Si,j will observe Ti Tj in its dependency graph after
processing the start request of pj .

1.2. Q.E.D.

2. Case: pi arrives later than pj on Si,j .

2.1. In this case pi and pj must both be deferrable pieces, otherwise pi and pj would be executed according
to their arrival order (pj before pi), a contradiction to the fact that pj is executed after pi

2.2. After Si,j has processed the start request of pi, according to Lemma 3, Si,j will observe a Tj Ti in
Si,j .dep, as the status Ti is STARTED.

2.3. Ti and Tj must be in the same SCC when Tj ’s finish flag is set to true. Otherwise according to
specification, the server should wait until it executes pj before it can execute pi, which is against the
fact that pi is executed earlier than pj .

2.4. Ti and Tj are in the same SCC suggests that Si,j must have observe a cycle Ti Tj Ti in its dep.

2.5. Q.E.D.

Proposition 3 reveals a fact that a cycle in the serialization graph corresponds to a cycle in the collective
depedency graph of all servers. Next, we will show that all servers involved in a cycle of dependency edges are

6



guaranteed to observe the complete cycle. This is achieved by Rococo’s dependency propagation mechanism
and by requiring a server to wait for all ancestors of a transaction to become COMMITTING. We recall
that dependency information is propagated through the system via three types of messages: coordinators’
commit requests, servers’ replies to start requests, servers’ replies to other servers’ ask requests. We refer to
any of these dependency-carrying messages as a dependency message.

The following lemma reveals the relationship between dependency graph and a dependency message that
contains some transaction as COMMITTING.

Lemma 5 For any two transactions Ti and Tj, if Ti→Tj appears in the dependency graph on some server,
Ti→Tj should be included in any dependency message that includes Tj as COMMITTING.

Proof: We will prove by contradiction. Assume there is a dependency message that contains Tj as COM-
MITTING but does not contain Ti→Tj . First, we will demonstrate that the condition of Ti→Tj appearing
in the dependency graph will lead to a result that Ti→Tj must be included in the commit request of Tj .
Second, we will show the assumption on existence of such a message will lead to a contradiction that such
message cannot exists.
1. According to Lemma 2, as Ti→Tj appears in the dependency graph, there are two conflicting pieces pi

and pj that belongs to Ti and Tj respectively. pi and pj belong to the same server, and pj arrives later
than pi. In the reply to the start request of pj , Ti→Tj will be included. Therefore, the coordinator will
also include Ti→Tj into the commit request of Tj .

2. Without loss of generality, assume the first dependency message that contains Tj as COMMITTING but
dos not contain Ti→Tj is c̃0. By Step 1, c̃0 cannot be the commit request of Tj . So c̃0 can only be sent out
by some server. Let S represent the server. Consider how S has Tj as COMMITTING. S must receive
some other dependency message that contains Tj as COMMITTING. Let this message be represented as
c′. Because c̃0 is the first message that contains Tj as COMMITTING but not contains Ti→Tj . So c′ has
to contain Ti→Tj . According to the specification c̃0 should contain Ti→Tj too. This is a contradiction.

3. Q.E.D.

The above proposition obviously leads to the following one:

Proposition 4 If there exists a cycle of transactions, θ: T1→T2→T3→...→Tn→T1, among the collective
dependency graphs of all servers, then for any pair transactions Ti→Tj in θ, Ti→Tj should be present in any
dependency message which contains transaction Tj as COMMITTING.

Proof: Obvious by Lemma 5.

With these properties at our hand, we can move on to prove Rococo is serializable. 1

Theorem 1 Rococo is conflict serializable in that it results only in acyclic serialization graph.

Proof: We will prove by contradiction. Assume Rococo results in an execution schedule whose the
serialization graph contains a cycle δ = T1→T2→...→Tn→T1. This cycle suggests there is no serial order to
which the execution is equivalent to. The key to proving this is false is to show that the presence of δ implies
a similar cycle, θ, in the collective dependency graph. Every server involved in θ will reorder θ following the
same deterministic order before executing any deferrable pieces of θ. Given this claim, we can argue that
there exists an equivalent serial execution order, which contradicts with the assumption. Such reordering is
possible because θ contains at least one deferrable edge, which is alreay explained in Proposition 1.

1. Consider any pair of transaction Ti→Tj in δ. According to Proposition 3, Ti→Tj in δ corresponds to a
path Ti Tj in some server’s dependency graph. Therefore δ necessarily implies a cycle θ in the collective
dependency graph of all servers. And an immediate edge in δ suggests an immediate path in θ. That

said, if Ti
i→Tj in δ, θ should contain Ti

i
 Tj .

1This theorem corresponds to Proposition 1 in the original paper.

7



2. According to Proposition 1 and Proposition 2, both δ and θ must contain deferrable edge(s). At least one

pair of transactions Ti and Tj exists, such that Ti
d→Tj in δ and Ti

d
 Tj in θ. The existence of the deferrable

edge(s) suggests it is possible to find a serial execution order which is compliant to the execution order
of the immediate pieces.

3. For any server that is involved in any transaction of θ, according to the specification, the server must wait
until the status of the transaction becoming COMMITTING before executing its deferred pieces. Because
the waiting is transitive, plus Proposition 4, the server must observe the entire θ before it starts to execute
any deferred piece of any transaction of θ. Moreover, consider the strongly connected component that θ
belongs to, represented by θSCC , all servers involved in any transaction of θSCC shall observe the same
θSCC .

4. By specification, the server should sort θSCC before it executes any deferrable piece of θSCC . Because
each cycle in θSCC contains at least a deferrable edge, the sorting is possible and will be compliant to the
execution of immediate pieces. Because the input (θSCC) is the same on each server, the output (sorted
order) should also be the same. This order is the equivalent serial execution order, which contradicts the
assumption earlier.

5. Q.E.D.

Next we are going to prove Rococo is strictly serializable by proving it preserves the commit to start
ordering in the serialization graph. 2

Theorem 2 Rococo is strictly conflict serializable in that not only it results in acyclic serialization graph
but also it obeys the commit to start ordering. In particular, for two transactions T1 and Tn, if T1 starts
after Tn commits, then the serialization graph the serialization graph must not contain a path T1 Tn.

Proof: We will prove by contradiction. Assume that for two transactions T1 and Tn, T1 starts after Tn
commits and the serialization graph contains a path T1 Tn. We can show that the path T1 Tn in the
serialization graph necessarily implies that T1 has already been issued to some server before Tn commits.
This contradicts with the assumption that T1 only starts after Tn has committed.

1. Consider any pair of transaction Ti→Tj on the path T1 Tn in the serialization graph. By Proposition 3,
some server will observe Ti Tj in its dep. So the path T1 Tn in the serialization graph necessarily
implies the existence of another path T1 Tn in the collective dependency graph of all servers. Let the
second path be denoted by T1→T2→...→Tn.

2. By specification, Tn can commit only after its finish flag is set on all involved servers. Consider the
procedure how this is done on a server denoted as Sn. Sn firstly needs to receive a dependency message
including Tn as COMMITTING, which contains a Tn−1 Tn. According to specification (line 52-53), the
server then needs to receive a dependency message including Tn−1 as COMMITTING. Transitively, Sn

needs to receive a dependency message including T1 as COMMITTING before it can set the finish flag
of Tn. This means the commit request of T1 has been sent out, which is a contradiction because T1 only
starts after Tn commits.

3. Q.E.D.

5 Optimized Rococo

The simplified Rococo is easier to understand and prove, but it is merely practical, mainly because of the
rapidly growing dependency graph size when dependency is tracked and the way the graph is exchanged
(the whole graph is sent every time). We have two main optimization techniques to reduce the graph size
in tracking and propagating to make the protocol more practical. The two techniques are 1) keep a smaller
set of dependencies when tracking. 2) include a smaller set of ancestors in the dependency graph when

2This theorem corresponds to Proposition 2 in the original paper.

8



propagating. The description of these optimizations are shown in our original paper. In this section we will
give their specification as pseudocode and then a formal proof about why the optimizations are correct based
on the proof on the simplified protocol given in the earlier section.

5.1 Pseudocode

Algorithm 6: Server S::start txn(p)

45 S.dep[p.owner].status := STARTED
46 S.track dep(p)
47 // execute an immediate piece in the start phase
48 if p.immediate then
49 output := execute(p)

50 dep info := S.subgraph(T )
51 reply (dep info, output)

Algorithm 7: Server S::commit txn(T , dep info)

52 S.dep := dep union(S.dep, dep info)
53

a for each T ′ T ∈ S.dep: S.dep[T ′].status < COMMITTING do
54 if T ′ does not involve S then
55 dep′ := S′.ask txn(T ′) where S′ is a server involved in T ′

56 S.dep := dep union(S.dep, dep′)

57 wait until S.dep[T ′].status ≥ COMMITTING

58 TSCC := strongly connected component(T , S.dep)

59 for each T ′ /∈ TSCC and T ′ T do
60 if T ′ involves S then
61 wait until T ′.finished = true

62 deterministic topological sort(T SCC)

63 for each T ′ in T SCC do
64 S.dep[T ′].status := DECIDED
65 if T ′ involves S and T ′.finished = false then
66 for each deferred p′ of T ′ do
67 T ′.output := T ′.output ∪ execute(p′)
68 T ′.finished := true

69 reply T.output

aOnce the S.dep has changed during the loop, the loop condition should be recalculated.

Algorithm 8: Server S::ask txn(T )

70 wait until S.dep[T ].status ≥ COMMITTING
71 if S[T ].status == DECIDED then
72 dep info = TSCC .
73 else
74 dep info := {T ′ T : T ′ T ∈ S.dep and @T ′′ ∈ T ′ T and T ′′ /∈ T ′SCC : S.dep[T ′′].status =

DECIDED or UNKNOWN }
75 // An extra optimization is setting the status of an ancestor of T in dep info to UNKNOWN to

reduce the size of graph exchanged.

76 reply dep info

9



Algorithm 9: Server S::track dep(p)

77 let T be p.owner
78 if p.immediate then

79 for each conflicting T ′ in S.dep and @ T ′ i
 T ∈ S.dep do

80 add T ′
i→T into S.dep

81 else
82 for each conflicting T ′ in S.dep and @ T ′ T ∈ S.dep do

83 add T ′
d→T into S.dep

5.2 Proof

Theorem 1
(Serializability)

Theorem 2
(Real-time order)

Lemma 1 Lemma 2 Lemma 3 Lemma 5Lemma 4

Prop 1 Prop 2 Prop 3 Prop 4

Figure 1: Proof structure of the simplified protocol

In proof of the optimizations, we take an incremental approach. Figure 1 shows the proof structure of
the simplified protocol. With the given optimizations, all the lemmas and propositions still remain true,
but they are not enough prove the theorems (strict-serializability), because new status are introduced in the
algorithms. We are going to provide a new proposition about the optimized protocols, and revise the proof
for the two theorems based on both previous properties and the new one.

Lemma 3 actually suggests why the optimization of tracking a smaller dependency graph is correct.
In the simplified version of Rococo, Lemma 3 is very obvious, because the simplified protocol actually
provides much stronger guarantee. Instead of a path, it actually adds a directed edge to every pair of
conflicting transactions. So the optimization in the tracking actually cuts down the dependency graph to
exactly what Lemma 3 needs.

In the proof of the simplified protocol, Proposition 4 is the key to link the cycle in the serialization graph
and the propagation of the dependency graph. In the proof of the optimized protocol, Proposition 4 alone
is not enough to prove serializability, because we have brought in a new status in the dependency propa-
gation: DECIDED. Therefore we need the following new proposition to explain the property of DECIDED
transactions.

Proposition 5 If there exists a cycle of transactions, θ: T1→T2→T3→...→Tn→T1, among the collective
dependency graphs of all servers, then for any Ti in θ, θ is included in all dependency messages including Ti
as DECIDED.

Proof: Assume there is a dependency message that contains a transaction of θ as DECIDED but it does not
contain the cycle of θ. We will show this assumption cannot be true because it will lead to a contradiction.
Without loss of generality, assume the first dependency message in the system that contains any transaction
of θ as DECIDED but does not contain θ is d̃0. Let the transaction be represented as Ti.

10



1. Let S represent the server that sends out d̃0. Consider how Ti became DECIDED on server S. Ti
becomes DECIDED either from 1) graph aggregation with another dependency message containing Ti as
DECIDED; or 2) the committing procedure that S has all ancestors of Ti as DECIDED.

2. Assume it is the first case: Ti became DECIDED S from graph aggregation. Otherwise, according to our
assumption, any dependency message containing Ti as DECIDED before d̃0 (if any) must contain θ. And
then according to specification, d̃0 should contain θ too. This contradicts with the assumption that d̃0
does not contain θ.

3. Assume it is the second case: S turned the status of Ti into DECIDED in the commit procedure. S
must have received all the dependency message(s) that contains all transactions in θ as COMMITTING.
According to Proposition 4, S will observe the whole cycle θ in a strongly connected component before
it decides Ti. This means that d̃0 will contain θ, which contradicts with the assumption that d̃0 does not
contain θ.

4. In both cases we have reached contradiction, which means the assumption that d̃0 does not contain θ
cannot be true.

5. Q.E.D.

With the help of Proposition 5, the revised proof for serializability is listed below.

Theorem 1 Rococo is conflict serializable in that it results only in acyclic serialization graph.

Proof: We will prove by contradiction. Assume Rococo results in an execution schedule whose serialization
graph contains a cycle δ = T1→T2→...→Tn→T1. This cycle suggests there is no serial order to which the
execution is equivalent to.

1. Consider any pair of transaction Ti→Tj in δ. According to Proposition 3, Ti→Tj in δ corresponds to a
path Ti Tj in some server’s dependency graph. Therefore δ necessarily implies a cycle θ in the collective
dependency graph of all servers. And an immediate edge in δ suggests an immediate path in θ. That

said, if Ti
i→Tj in δ, θ should contain Ti

i
 Tj .

2. According to Proposition 1 and Proposition 2, both δ and θ must contain deferrable edge(s). At least one

pair of transactions Ti and Tj exists, such that Ti
d→Tj in δ and Ti

d
 Tj in θ. The existence of the deferrable

edge(s) suggests it is possible to find a serial execution order which is compliant to the execution order
of the immediate pieces.

3. For any server that is involved in any transaction of θ, according to the specification, the server must
wait until the status of the transaction becoming DECIDED and all its ancestors involved in this server
is finished before executing its deferred pieces. There are two ways the transaction becomes DECIDED:
through graph aggregation and through the committing procedure.

4. We now discuss by case. If through graph aggregation, then the server will observe the entire θ (and θSCC)
after aggregation, according to Proposition 5. If through committing procedure, according to Proposi-
tion 4, the server must observe the entire θSCC before it starts to execute any deferred piece of any
transaction of θ. Therefore, in both cases, the server will observe θSCC before executing any transaction
of θ.

5. By specification, the server should sort θSCC before it executes any deferrable piece of θSCC . Because
each cycle in θSCC contains at least a deferrable edge, the sorting is possible and will be compliant to the
execution of immediate pieces. Because the input (θSCC) is the same on each server, the output (sorted
order) should also be the same. This order is the equivalent serial execution order, which contradicts with
the assumption that such order does not exist.

6. Q.E.D.

Below is the revised proof for strict-serializability.

11



Theorem 2 Rococo is strictly conflict serializable in that not only it results in acyclic serialization graph
but also it obeys the commit to start ordering. In particular, for two transactions T1 and Tn, if T1 starts
after Tn commits, then the serialization graph the serialization graph must not contain a path T1 Tn.

Proof: We will prove by contradiction. Assume that for two transactions T1 and Tn, T1 starts after Tn
commits and the serialization graph contains a path T1 Tn. We can show that the path T1 Tn in the
serialization graph necessarily implies that T1 has already been issued to some server before Tn commits.
This contradicts with the assumption that T1 only starts after Tn has committed.

1. Consider any pair of transaction Ti→Tj on the path T1 Tn in the serialization graph. By Proposition 3,
some server will observe Ti Tj in its dep. So the path T1 Tn in the serialization graph necessarily
implies the existence of another path T1 Tn in the collective dependency graph of all servers. Let the
second path be denoted by T1→T2→...→Tn.

2. By specification, Tn can commit only after its finish flag is set on all involved servers. Consider the
procedure how this is done on a server denoted as Sn. Again there are two cases where Sn turns Tn to
DECIDED: through graph aggregation and through committing procedure. If this is done through graph
aggregation, it means recursively we can trace to a server that decides Tn through committing procedure.
Let this server be denoted as S′, where S′ could be the same server as Sn.

3. Consider how S′ commits Tn. It needs to receive the message that contains Tn as committing, and we
know this message will contain Tn−1→Tn according to Lemma 5. The server S′ then needs to transitively
collect dependencies for Tn−1. There are two cases now, the server S′ can either receive a message that
has Tn−1 as COMMITTING, or a message that has Tn−1 as DECIDED.

3.1. If it is the first case, i.e., the message has Tn−1 as COMMITTING, then the server S′n needs to
continue to track for Tn−2.

3.2. If it is the second case, i.e., the message has Tn−1 as DECIDED, then let us trace this message again
to the first server that turns Tn−1 to DECIDED through the commit procedure. Let the server be
denoted as S′′. Consider how S′′ commits Tn−1, it needs to receive either the message that has Tn−1
as COMMITTING, and this message must contain Tn−2→Tn−1.

4. We can recursive apply the previous step, until we reach some server S that sees T1→T2. This means T1
must already have started before Tn commits, which contradicts the assumption that T1 starts after Tn
commits.

5. Q.E.D.

References

[1] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems (TOPLAS), 12(3), 1990.

[2] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more concurrency from distributed transactions.
In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI),
2014.

[3] C. H. Papadimitriou. The serializability of concurrent database updates. Journal of the ACM (JACM),
26(4), 1979.

12


