
Carnegie Mellon

Computer Systems Organization

Shuai Mu

Slides are based on Tiger Wang’s and Jinyang Li’s class

Why study CSO?

The path of your next few years

graduation

interview

programmer

The path of your next few years

graduation

interview

programmer

apply for graduate school

programmer & researcher

The path of your next few years

graduation

interview

programmer

graduate school

programmer & researcher

startup

Hire / become

The path of your next few years
graduation

interview

programmer

graduate school

programmer & researcher

startup
lawyer

Be able to
Hire / become

The path of your next few years
graduation

interview

programmer

graduate school

programmer & researcher

startup
lawyer

Be able to
Hire / become

enjoy life

~2M programmers in
2014 according to IDC

The path of your next few years
graduation

interview

programmer

graduate school

programmer & researcher

startup
lawyer

Be able to
Hire / become

enjoy life

be in a relationship with

Taking CSO will affect each
step in the path!

For Graduation

Required class
– For CS Major
– Also for CS minor L

Prepare for your later system classes
– Operating Systems, Compilers, Networks,

Computer Architecture, Distributed Systems

For Interview

This class adds to your CV
– C Programming, UNIX, X86 Assembly …

Interview related topics
– Basic knowledge of Array, String, Bit Manipulation

Topics Distribution From LeetCode
~30%

Some examples and
exercises in this class are
derived from the real
interview questions !

Our text books are
considered as the
bibles of job interview.

For Graduate School Application

This class adds to your CV
– A

Research related topics
– Performance optimization

• Memory layout, code optimization, memory allocation,
concurrent programming

– Security
• Buffer Overflow

Startup

The life you imagine

CEO
CTO
CFO
COO

Startup

Your real life: full stack programmer

Server

Website

Optimizations

Phone’s App

My lawyer friend
Take >10 hours each day to extract

information from the documents

My lawyer friend

I want to study programming.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

Hmm…, I want to marry a
programmer.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

Hmm…, I want to marry a
programmer.

Ok, you need to study CSO first.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

Hmm…, I want to marry a
programmer.

Ok, you need to study CSO first.

…The user is offline

Conversation between programmers
Have you heard of the

Meltdown attack?

No. Is it bad?

Meltdown lets an
attacker read another

process’ address space!

What is an address space?

He does not know anything
about computers...

Sorry I have to run now,
bye!

For Programming

Understand how your program runs on the
hardware

– Why it fails
– Why it is slow

Why it fails?

What is the result of 1000,000 * 1000,000 ?

Why it fails?

What is the result of 1000,000 * 1000,000 ?
Expected answer: 1000,000,000,000 (1 trillion)

Why it fails?

int main()
{

int a = 1000000;
int b = 1000000;
int r = a * b;
printf("result is %d\n", r);
return 0;

}

What is the result of 1000,000 * 1000,000 ?
Expected answer: 1000,000,000,000 (1 trillion)

Carnegie Mellon

Why it is slow?

Both implementations have exactly the same operations
count (2n3)

Example Matrix Multiplication

160x

Triple loop

Best code (K. Goto)

Th
ro
ug
hp
ut

What is CSO about?

Computer System Organization

Computer System Organization

Printed Circuit

Computer System Organization

Printed Circuit

Layered Organization

Hardware

Software

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Logical Circuits,
Flip-Flops, Gates

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Logical Circuits,
Flip-Flops, Gates

CPU, Memory, Disk

Layered Organization

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

Layered Organization

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

System Software
(OS, compiler, VM…)

Layered Organization

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

System Software
(OS, compiler, VM…)

User Applications

Layered Organization

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

System Software
(OS, compiler, VM…)

User Applications

Users

Layered Organization

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

System Software

User Applications User App
Operating

System
Compilers …

Abstraction

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

CPU Memory I/O

System Software

User Applications User App

Operating
System

Compilers …

Abstract
Interface

The Scope of This Class

Hardware

Software

Transistors, Diodes, Resistors, …

Logical Circuits, Flip-Flops, Gates, …

Memory I/O

System Software

User Applications User App

Operating
System

Compilers …

Abstract
Interface

CPU

The Scope of This class

Focus on abstract interfaces exposed by
– CPU and Memory
– Operating System, Compilers

Hardware

Software
System Software

Operating Systems and Compilers

C Programming, OS Service, Memory
Management, Concurrent Programming

CPU and Memory

Assembly, Virtual memory, Interrupt

Schedule of Our Class
http://mpaxos.com/teaching/cso18spring/schedule.html
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)

C Programming

Schedule of Our Class
http://mpaxos.com/teaching/cso18spring/schedule.html
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations

C Programming

Assembly (X86)

Schedule of Our Class
http://mpaxos.com/teaching/cso18spring/schedule.html
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Virtual memory: Address Spaces/ Translation, Goal
Virtual memory: Page table/physcial to virtual
Process

C Programming

Assembly (X86)

Virtual Memory

Schedule of Our Class
http://mpaxos.com/teaching/cso18spring/schedule.html
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Virtual memory: Address Spaces/ Translation, Goal
Virtual memory: Page table/physcial to virtual
Process
Dynamic Memory Allocation I: malloc, free
Dynamic Memory Allocation II: design allocator
Dynamic Memory Allocation III: futher optimization

C Programming

Assembly (X86)

Virtual Memory

Memory Management

Schedule of Our Class
http://mpaxos.com/teaching/cso18spring/schedule.html
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Virtual memory: Address Spaces/ Translation, Goal
Virtual memory: Page table/physcial to virtual
Process
Dynamic Memory Allocation I: malloc, free
Dynamic Memory Allocation II: design allocator
Dynamic Memory Allocation III: futher optimization
Concurrent Programming I: thread, race
Concurrent Programming II: lock
Concurrent Programming III: conditional variable
Concurrent Programming IV: Other primitives

C Programming

Assembly (X86)

Virtual Memory

Memory Management

Concurrent Programming

Carnegie Mellon

Course Perspective

Most Systems Courses are Builder-Centric
– Computer Architecture

• Design pipelined processor in Verilog
– Operating Systems

• Implement large portions of operating system
– Compilers

• Write compiler for simple language
– Networking

• Implement and simulate network protocols

Carnegie Mellon

Course Perspective

Most Systems Courses are Builder-Centric
– Computer Architecture

• Design pipelined processor in Verilog
– Operating Systems

• Implement large portions of operating system
– Compilers

• Write compiler for simple language
– Networking

• Implement and simulate network protocols

Carnegie Mellon

Course Perspective (Cont.)

This course is programmer-centric
– Understanding of underlying system makes a

more effective programmer
– Bring out the hidden hacker in everyone

To be a happy programmer, you should

Attend
– Lectures (T/R 2:00-3:15pm)
– Recitation (W 8:00-9:15 am)

• In-class exercises provide hands-on instruction
Do

– 5 Programming labs
– Recitation exercises

Pass
– Quiz 1 (2/27)
– Quiz 2 (3/27)
– Final exam

Grade Breakdown

Recitation and Exercises 15%
Labs 40%
Quiz 1 10%
Quiz 2 15%
Final 20%

Bonus I: lecture and piazza participation 5%
Bonus II: extra-credit lab questions (points
vary)

Is CSO going to be hard?

CS, 14

Others, 14

Undecided,
10

Freshman, 2

Sophomore,
13

Junior, 7

Senior, 16

We (the course staff) are here to help

Time to work hard

Who are we?

Shuai Mu
Lecturer

Conrad Christensen
Recitation Leader & Grader

Lamont Nelson

Grader

Before Class
Read the related sections in the text books

“Computer Systems: A Programmer’s
Perspective, 3nd Edition”,
http://csapp.cs.cmu.edu

“The C Programming Language,
2nd Edition”, Prentice Hall, 1988,

Reserved at NYU library

Be Active In Class

Raise your hand at any time
– Ask me to repeat, repeat and repeat
– Ask questions
– Answer questions from me or others

Have discussion and make friends with
each others

After Class

Finish all labs / exercises
– By yourself

Attend the recitations
– Any issue of doing labs or exercises

Getting help
– Office hour, Piazza

Carnegie Mellon

Policies

You must work alone on all assignments
– You may post questions on Piazza,
– You are encouraged to answer others’ questions,

but refrain from explicitly giving away solutions.

Labs & Exercises
– Assignments due at 11:59pm on the due date
– Everybody has 5 grace days
– Zero score after the due

http://mpaxos.com/teaching/cso18spring/

Class Info

Recitation starts next Wed

Carnegie Mellon

Integrity and Collaboration Policy
We will enforce the policy strictly.
1. The work that you turn in must be yours
2. You must acknowledge your influences
3. You must not look at, or use, solutions from prior

years or the Web, or seek assistance from the Internet
4. You must take reasonable steps to protect your work
– You must not publish your solutions

5. If there are inexplicable discrepancies between exam
and lab performance, we will over-weight the exam
and interview you.

Do not turn in labs/exercises that are not yours
You won’t fail because of one missing lab

Carnegie Mellon

Integrity and Collaboration Policy

We will enforce this policy strictly and report
violators to the department and Dean.

