
Dynamic Memory Allocation
Shuai Mu

based on slides from Jinyang Li and Tiger Wang

Why dynamic memory allocation?
Allocation size is unknown until the program runs
(at runtime).

#define MAXN 15213
int array[MAXN];

int main(void)
{

int i, n;
scanf("%d", &n);
if (n > MAXN)

app_error("Input file too big");
for (i = 0; i < n; i++)

scanf("%d", &array[i]);
exit(0);

}

Why dynamic memory allocation?

Allocation size is unknown until the program runs
(at runtime).

int main(void)
{

int *array, i, n;

scanf("%d", &n);
array = (int *)malloc(n * sizeof(int));
for (i = 0; i < n; i++)

scanf("%d", &array[i]);
exit(0);

}

Dynamic allocation on heap

Shared libraries

Runtime heap

User stack

Unused

%rsp
(stack
pointer)

brk

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Question: can one dynamically
allocate memory on stack?

Dynamic allocation on heap
Question: Is it possible to dynamically
allocate memory on stack?

Answer: Yes, but space is freed upon
function return

#include <stdlib.h>
void *alloca(size_t size);

void func(int n) {
array = alloca(n);

}

...
ret

array
%rsp

n bytes

subq $n,%rsp

Not good practice!

User stack

Dynamic allocation on heap
Question: How to allocate memory
on heap?

Shared libraries

Runtime heap

User stack

Unused

%rsp
(stack
pointer)

brk

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Dynamic allocation on heap
Question: How to allocate memory
on heap?

Ask OS for allocation on the heap
via system calls

void *sbrk(intptr_t size);
Shared libraries

Runtime heap

User stack

Unused

%rsp
(stack
pointer)

brk

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

It increases the top of heap by “size” and returns
a pointer to the base of new storage. The “size”
can be a negative number.

Shared libraries

Runtime heap

User stack

Unused

%rsp
(stack
pointer)

brk

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Dynamic allocation on heap
Question: How to allocate memory
on heap?

Ask OS for allocation on the heap
via system calls

void *sbrk(intptr_t size);

It increases the top of heap by “size” and returns
a pointer to the base of new storage. The “size”
can be a negative number.

p = sbrk(1024) //allocate 1KB

1KB

Shared libraries

Runtime heap

User stack

Unused

%rsp
(stack
pointer)

brk

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Dynamic allocation on heap
Question: How to allocate memory
on heap?

Ask OS for allocation on the heap
via system calls

void *sbrk(intptr_t size);

It increases the top of heap by “size” and returns
a pointer to the base of new storage. The “size”
can be a negative number.

p = sbrk(1024) //allocate 1KB

1KB

sbrk(-1024) //free p

Dynamic allocation on heap
Question: How to allocate memory
on heap?

Ask OS for allocation on the heap
via system calls

void *sbrk(intptr_t size);

Issue I – can only free the memory
on the top of heap

p1 = sbrk(1024) //allocate 1KB
p2 = sbrk(2048) //allocate 4KB

How to free p1?

Shared libraries

4KB

User stack

Unused

%rsp
(stack
pointer)

brk

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

1KB

Dynamic allocation on heap
Question: How to allocate memory
on heap?

Ask OS for allocation on the heap
via system calls

void *sbrk(intptr_t size);

Issue I – can only free the memory
on the top of heap

Issue II – system call has high
performance cost > 10X

Shared libraries

Runtime heap

User stack

Unused

%rsp
(stack
pointer)

brk

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Dynamic allocation on heap

Basic idea – request a large of
memory region from heap once,
then manage this memory region
by itself. à allocator in the library

Question: How to effciently allocate
memory on heap?

User
program

User
program

User
program

User
program

Operating System

C standard library

malloc/free

sbrk

tcmalloc
(by Google)

your malloc
(lab4)

Memory Allocator
Assumption in this lecture

– At the beginning, the allocator requests enough memory
with sbrk

Goal
– Efficiently utilize acquired memory with high throughput

• high throughput – how many mallocs / frees can be done per
second

• high utilization – fraction of allocated size / total heap size

Memory Allocator
Assumed behavior of applications:

– Issue an arbitrary sequence of malloc/free
– Argument of free must be the return value of a

previous malloc
– No double free

Restrictions on the allocator:
– Once allocated, cannot be moved

Questions
1. (Basic book-keeping) How to keep track which

bytes are free and which are not?

2. (Allocation decision) Which free chunk to
allocate?

3. (API restriction) free is only given a pointer,
how to find out the allocated chunk size?

How to bookkeep? Strawman #1
• Structure heap as n 1KB chunks + n metadata

1KB 0 0 0 0 0

#define CHUNKSIZE

typedef chunk char[CHUNKSIZE];

char *bitmap;

chunk *chunks;

size_t n_chunks;

void init() {

n_chunks = 1<<10;

sbrk(n_chunks*CHUNKSIZE + n_chunks/8);

bitmap = heap_hi()+1 – n_chunks/8;

chunks = (chunk *)heap_lo();

}

bitmap

0 0 01KB 1KB 1KB 1KB 1KB 1KB 1KB

chunks

How to bookkeep? Strawman #1

1KB 0 0 0 0 0

void *malloc(size_t sz) {
assert(sz < CHUNKSIZE);
size_t i = 0;
for (; i < n_chunks; i++) {
if !bitmap_get_pos(bitmap, i)

break; //found a free chunk
}

if (i == n_chunks) //did not find a free chunk
return NULL;

bitmap_set_pos(bitmap, i);
return (void *)&chunk[i];

}

bitmap

0 0 11KB 1KB 1KB 1KB 1KB 1KB 1KB

chunks p=malloc(1000);

How to bookkeep? Strawman #1

• Problem with strawman?
– cannot malloc more than a chunk at a time
– cannot malloc less than a chunk

1KB 0 0 0 0 0

void free(void *p) {
i = ((char *)p – (char *)chunks)/CHUNKSIZE;
bitmap_unset_pos(bitmap, i);

}

bitmap

0 0 11KB 1KB 1KB 1KB 1KB 1KB 1KB

chunks p=malloc(1000);

How to bookkeep? Other
Strawmans

• How to support a variable number of variable-
sized chunks?
– Idea #1: use a hash table to map address à [chunk

size, status]
– Idea #2: use a linked list in which each node stores

[address, chunk size, status] information.

Problems of strawmans?
Implementing a hash table and linked list requires
use of a dynamic memory allocator!

How to implement a
“linked list” without use of malloc

Implicit list
Embed chunk metadata in the chunks
- Chunk meta-data has a 8-byte header
- Chunk data (payload) is 16-byte aligned

à Chunk size (metadata+payload) is multiple of 16

Payload

Padding
(optional)

header (8 bytes)
0

allocated: header & 0x1
size: header >> 1

Implicit list
Embed chunk metadata in the chunks
- Chunk meta-data has a 8-byte header
- Chunk data (payload) is 16-byte aligned

à Chunk size (metadata+payload) is multiple of 16

p = malloc(1024) 0x411

1KB payload
p

8B padding

Implicit list
Embed the metadata in the chunks (blocks)
- Each block has a one-word (8 bytes) header
- Block is double-word (16 bytes) alignment

à Size is multiple of 16

p = malloc(1) ???
???

p

???

Implicit list
Embed the metadata in the chunks (blocks)
- Each block has a one-word (8 bytes) header
- Block is double-word (16 bytes) alignment

à Size is multiple of 16

p = malloc(1) 0x11
1B payload

p

7B padding

Exercises

Alignment Request Block size Header (hex)

8 bytes malloc(5)

4 bytes malloc(13)

16 bytes malloc(20)

8 bytes malloc(3)

Exercises

Alignment Request Block size Header (hex)

8 bytes malloc(5) 16 0x11

4 bytes malloc(13) 24 0x19

16 bytes malloc(20) 32 0x21

8 bytes malloc(3) 16 0x11

How to traverse an implicit list
void traverse_implicit_list() {

char *chunk = heap_lo();
while (chunk < heap_high()) {

bool allocated = get_status(*(unsigned long *)chunk);
size_t csz = get_chunksz(*(unsigned long *)chunk);
chunk += csz;

}

}
bool get_status(unsigned long header) {

return header & 0x1;
}
size_t get_chunksize(unsigned long header) {

return header >> 1;
}

Placing allocated blocks
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)

header
allocated payload
padding
free block

heap
start

address

Placing allocated blocks
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)

header
allocated payload
padding
free block

heap
start

address

Placing allocated blocks
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(8)

header
allocated payload
padding
free block

heap
start

address

First fit – Search list from beginning,
choose first free block that fits

cur

Placing allocated blocks
header
allocated payload
padding
free block

heap
start

address

First fit – Search list from beginning,
choose first free block that fits

Issue: cause “splinters/fragments”
at beginning of the buffer

curp1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(8)

Placing allocated blocks
header
allocated payload
padding
free block

heap
start

address

cur

Best fit – choose the free block
with the closest size that fits

p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(8)

Placing allocated blocks
header
allocated payload
padding
free block

heap
start

address

cur

Best fit – choose the free block
with the closest size that fits

p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(8)

Placing allocated blocks
header
allocated payload
padding
free block

heap
start

address

cur Best fit – Search list from beginning,
choose first free block that fits

Best fit keeps fragments small,
but typically run slower than first
fit.

p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(8)

Placing allocated blocks
header
allocated payload
padding
free block

heap
start

address

cur Next fit – like first-fit, but search
list from the location where
previous search left off.

p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(8)
p8 = malloc(56)

Placing allocated blocks
header
allocated payload
padding
free block

heap
start

address
cur

Next fit – like first-fit, but search
list from from the location where
previous search left off.

Next fit runs faster than first fit,
but fragmentation is worse.

p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(8)
p8 = malloc(56)

Placing allocated blocks
header
allocated payload
padding
free block

heap
start

address

p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(24)
p8 = malloc(24)

Placing allocated blocks
header
allocated payload
padding
free block

heap
start

address

curp1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(24)
p8 = malloc(24)

Placing allocated blocks
header
allocated payload
padding
free block

heap
start

address
cur

p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(24)
p8 = malloc(24)

Splitting free block
header
allocated payload
padding
free block

heap
start

address
cur

24B Payload

0x21

???

???

p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(24)
p8 = malloc(24)

Splitting free block
header
allocated payload
padding
free block

heap
start

address
cur

24B Payload

0x21

24B Payload

0x20

p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
p7 = malloc(24)
p8 = malloc(24)

Coalescing free blocks
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
free(p5)

header
allocated payload
padding
free block

heap
start

address
cur

Coalescing free blocks
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
free(p5)

header
allocated payload
padding
free block

heap
start

address
24B Payload

0x20

56B Payload

0x40

cur

Coalescing free blocks
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
free(p5)

header
allocated payload
padding
free block

heap
start

address 88B Payload

0x60

Coalescing with next block

cur

Coalescing free blocks
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
free(p5)

header
allocated payload
padding
free block

heap
start

address 88B Payload

0x60

Coalescing with next block

cur

How to coalesce with previous
block?

Coalescing free blocks
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
free(p5)

header
allocated payload
padding
free block

heap
start

address 88B Payload

0x60

Coalescing with next block

cur

How to coalesce with previous
block?
-- search from start?

Coalescing free blocks
Embed the metadata in the chunks (blocks)
- Each block has a one-word (8 bytes) header and

(8 bytes) footer
- Block is double-word (16 bytes) alignment

à Size is multiple of 16

p = malloc(1024)

0x411

1KB payload
p

header

0x411 footer

Payload

Padding
(optional)

header (8 bytes)
0

0
footer (8 bytes)

Coalescing free blocks
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
free(p5)

header
allocated payload / padding
footer
free block

heap
start

cur (p5)

24B Payload

0x30

0x30
8B Padding

56B Payload

0x50

0x50
8B Padding

Coalescing free blocks
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
free(p5)

header
allocated payload / padding
footer
free block

heap
start

cur (p5)

0x80

0x80

Coalescing free blocks
p1 = malloc(8)
p2 = malloc(24)
p3 = malloc(56)
p4 = malloc(8)
p5 = malloc(24)
p6 = malloc(56)
free(p2)
free(p4)
free(p6)
free(p5)

header
allocated payload / padding
footer
free block

heap
start

cur (p4)

0x100

0x100

Explicit free lists
Problems of implicit list:

– Allocation time is linear in # of total (free and
allocated) chunks

Explicit free list:
– Maintain a linked list of free chunks only.

Explicit free list

• Question: do we need next/prev fields for allocated blocks?

...

0

Free chunk

Next
Prev

0

Payload

1

Allocated chunk
1

free (p)

p points to next free chunk
points to previous free chunk

Answer: No. We do not need to traverse allocated blocks only. We can still
traverse all blocks (free and allocated) as in the case of implicit list.

• Question: what’s the minimal size of a free chunk?
Answer: 32 bytes

How to traverse an explicit list
typedef struct free_header {

unsigned long size_n_status;
struct free_header *next;
struct free_header *prev;

} free_hdr;

free_header *freelist;
void init() {
//starts with a list of one free chunk

}
void traverse_explicit_list() {

free_hdr *f = freelist;
while (f!=NULL) {

bool allocated = get_status(f->size_n_status);
size_t csz = get_chunksz(f->size_n_status);
f = f->next;

}
}

Segregated list
• Idea: keep multiple freelists

– each freelist contains chunks of similar sizes

Segregated list
Free lists

{16} {32-48} {64 – 128}

Determine
size class

First fit

fit?
Yes

Remove and
split free block

Insert the
fragment

No Search in
next free list

Buddy System
Adopted by Linux kernel and jemalloc

This lecture
– A simplified binary buddy allocator

Binary buddy system

64K

(0000 0000 0000 0000)2

Binary buddy system

32KBuddy

Buddy 32K

(0000 0000 0000 0000)2

(1000 0000 0000 0000)2

Split
- Split exactly in half

Binary buddy system

16KBuddy

Buddy 16K

(0000 0000 0000 0000)2

(1000 0000 0000 0000)2

(0100 0000 0000 0000)2

32K

Split
- Split exactly in half
- Each half is the buddy of the other

Address
- Block of size 2n begin at memory

addresses where the n least significant
bits are zero

- When a block of size 2n+1 is split into
two blocks of size 2n, the addresses of
these two blocks will differ in exactly one
bit, bit n.

If a block of size 2n begins at address addr,
what is its buddy address and size?

Binary buddy system

16KBuddy

Buddy 16K

(0000 0000 0000 0000)2

(1000 0000 0000 0000)2

(0100 0000 0000 0000)2

32K

Split
- Split exactly in half
- Each half is the buddy of the other

Address
- Block of size 2n begin at memory

addresses where the n least significant
bits are zero

- When a block of size 2n+1 is split into
two blocks of size 2n, the addresses of
these two blocks will differ in exactly one
bit, bit n.

If a block of size 2n begins at address addr,
what is its buddy address and size?
addr of buddy = addr ^ (1<<n)

Binary buddy system

16KBuddy

Buddy 16K

(0000 0000 0000 0000)2

(1000 0000 0000 0000)2

(0100 0000 0000 0000)2

32K

Split
- Split exactly in half
- Each half is the buddy of the other

Address
- Block of size 2n begin at memory

addresses where the n least significant
bits are zero

- When a block of size 2n+1 is split into
two blocks of size 2n, the addresses of
these two blocks will differ in exactly one
bit, bit n.

Combine
- We assume only combine with its buddy

block in our lecture

Buddy system
Free lists

24 25 26

Determine
size class

First fit

fit?
Yes

recursively
split free block
in half until fit

Insert the
fragment

No Search in
next free list

p = malloc(1)

Step 1. search in 26 list

Step 2. recursive split

(x000000)2

Each list has the
same size of blocks
which is a power of 2.

Buddy system
Free lists

24 25 26

Determine
size class

First fit

fit?
Yes

recursively
split free block
in half until fit

Insert the
fragment

No Search in
next free list

p = malloc(1)

Step 1. search in 26 list

Step 2. recursive split

(x000000)2

(x100000)2

Buddy system
Free lists

24 25 26

Determine
size class

First fit

fit?
Yes

recursively
split free block
in half until fit

Insert the
fragment

No Search in
next free list

p = malloc(1)

Step 1. search in 26 list

Step 2. recursive split

(x000000)2

(x100000)2

(x010000)2

Buddy system
Free lists

24 25 26

Determine
size class

First fit

fit?
Yes

recursively
split free block
in half until fit

Insert the
fragment

No Search in
next free list

p = malloc(1)

Step 1. search in 26 list

Step 2. recursive split

(x000000)2

(x100000)2

(x010000)2

Buddy system
Free lists

24 25 26

Determine
size class

First fit

fit?
Yes

recursively
split free block
in half until fit

Insert the
fragment

No Search in
next free list

p = malloc(1)

Step 1. search in 26 list

Step 2. recursive split

Step 3. insert free blocks
into the list

Step 4. return, p is (x000000)2

(x010000)2 (x100000)2

Buddy system
Free lists

24 25 26

Determine
size class

First fit

fit?
Yes

recursively
split free block
in half until fit

Insert the
fragment

No Search in
next free list

p = malloc(1)

free(p) (x010000)2

(x100000)2(x010000)2

Buddy system
Free lists

24 25 26

Determine
size class

First fit

fit?

Yes
recursively

split free block
in half until fit

Insert the
fragment

No Search in
next free list

p = malloc(1)

free(p)

(x100000)2

p’s address is (x000000)2 , size is
16B (no footer in this example)

à p’s buddy is 16 B block begins at x000000 ^ (1<<4)
which is (x010000)2

(x010000)2

(x010000)2

Buddy system
Free lists

24 25 26

Determine
size class

First fit

fit?

Yes
recursively

split free block
in half until fit

Insert the
fragment

No Search in
next free list

p = malloc(1)

free(p)

(x000000)2

(x100000)2

p’s address is (x000000)2 , size is
32B (no footer in this example)

à p’s buddy is 32 B block begins at x000000 ^ (1<<5)
which is (x100000)2

Buddy system
Free lists

24 25

Determine
size class

First fit

fit?

Yes
recursively

split free block
in half until fit

Insert the
fragment

No Search in
next free list

p = malloc(1)

free(p)

p’s address is (x000000)2 , size is
32B

à p’s next block address is p + 32B
which is (x100000)2

26

(x000000)2

