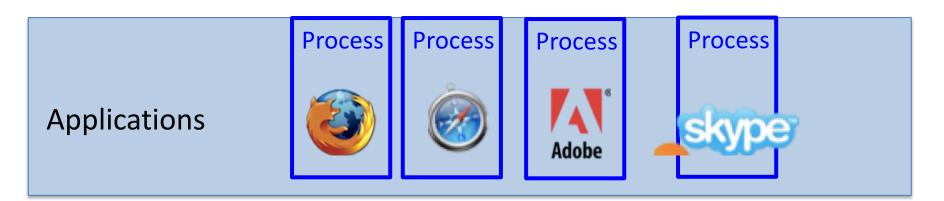
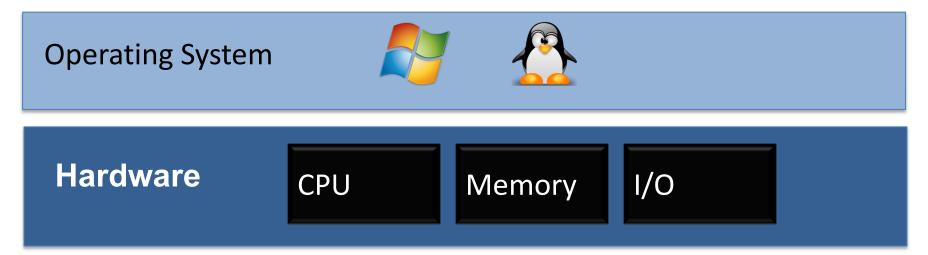
User program and OS interaction Multiprocessing

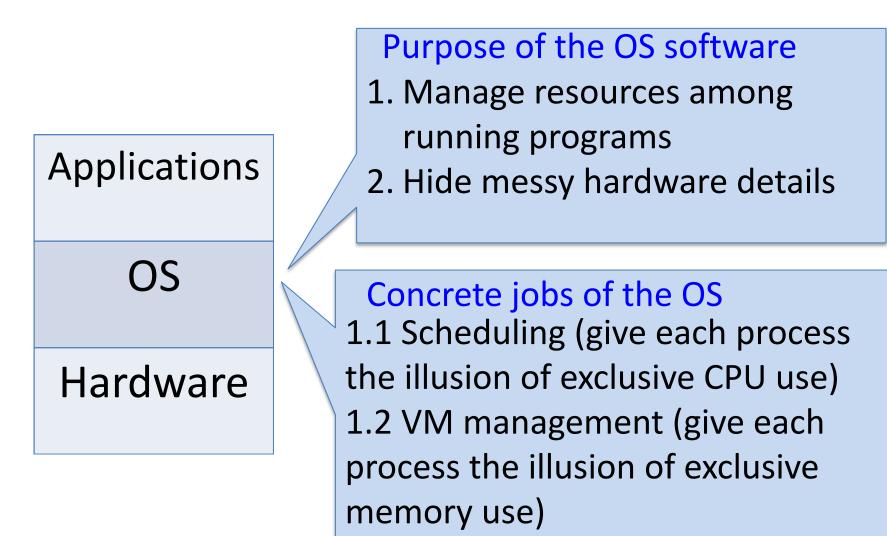
Jinyang Li & Shuai Mu

What we've learnt so far


- Machine instructions
 - compiler translates C to x86 instructions
 - x86 instructions are executed by CPU hardware only
- Dynamic memory allocator
 - realized as a library implementation
- Virtual memory
 - each process has its own virtual address space
 - VM is realized by a combination of hardware mechanism and OS implementation
 - MMU performs address translation
 - OS populates page table


Today's lesson plan

- 1. Interaction between user programs and OS
- 2. Multiprocessing


Interaction between user programs and OS I mean OS kernel

Applications, OS, Hardware

The role of OS

2. file systems, networking, I/O

Process

- Process is an instance of a running program
 - when you type ./a.out, a process is launched
 - when you type Ctrl-C, the process is killed
- Each process corresponds to some state in OS
 - process identifier (process id)
 - user id
 - status (e.g. runnable or blocked)
 - saved rip and other registers
 - VM structure (including its page table)

Only OS can modify these data

How to protect the OS from user processes?

- Hardware provides privileged vs. non-privileged mode of execution also called supervisor/kernel mode
- OS runs in privileged mode
 - can change content of CR3 (points to root page table)
 - can access VA marked as supervisor only
- User programs run in non-privileged mode
 - cannot access kernel data structures because they are stored in VA marked as supervisor only

How to get into privileged mode?

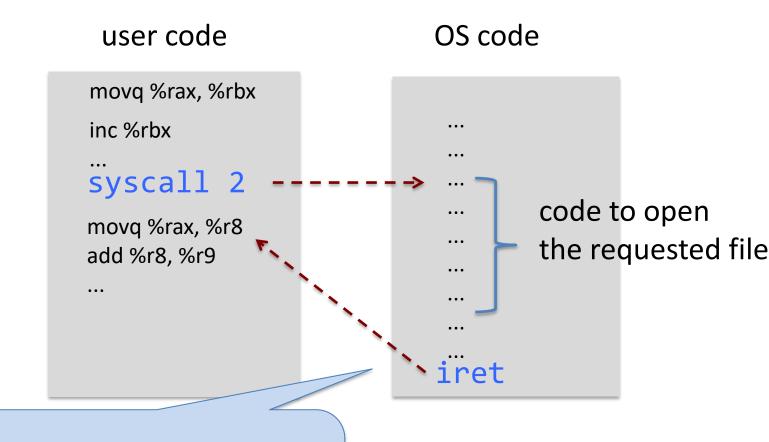
Hardware provides 3 controlled mechanisms to switch from non-privileged to privileged execution:

- 1. Traps
 - syscalls (user programs explicitly ask for OS help)
- 2. Exception (caused by the current running program)
 - e.g. divide by zero, page fault
- 3. Interrupt (caused by external events)
 - timer, device events e.g. keyboard press, packet arrival

How to get out of privileged mode?

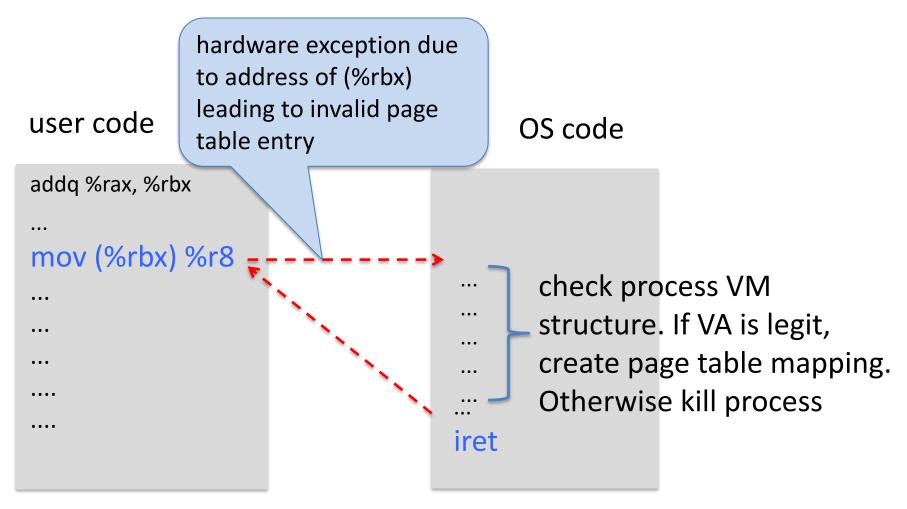
- OS uses the special hardware instruction **iret**
- OS may return to the same program or context switch to execute a different program

#1 Traps: Syscall: User → OS


User programs ask for OS services using syscalls

- it's like invoking a function in OS

• Each syscall has a known number

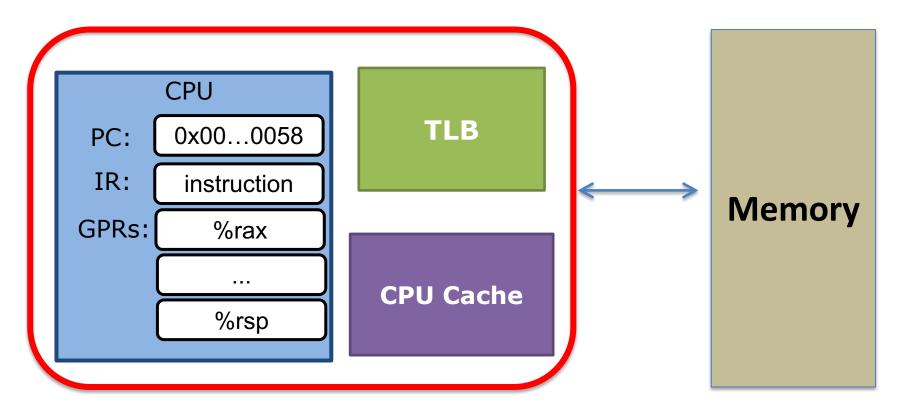

0	read	
1	write	C library wraps
2	open	these syscalls to provide file I/O
3	close	
•••		
57	fork	
59	execve	
60	exit	
62	kill	linux syscall number

Syscall: user \rightarrow OS

Assuming OS wants to execute the same process next; it does not have to

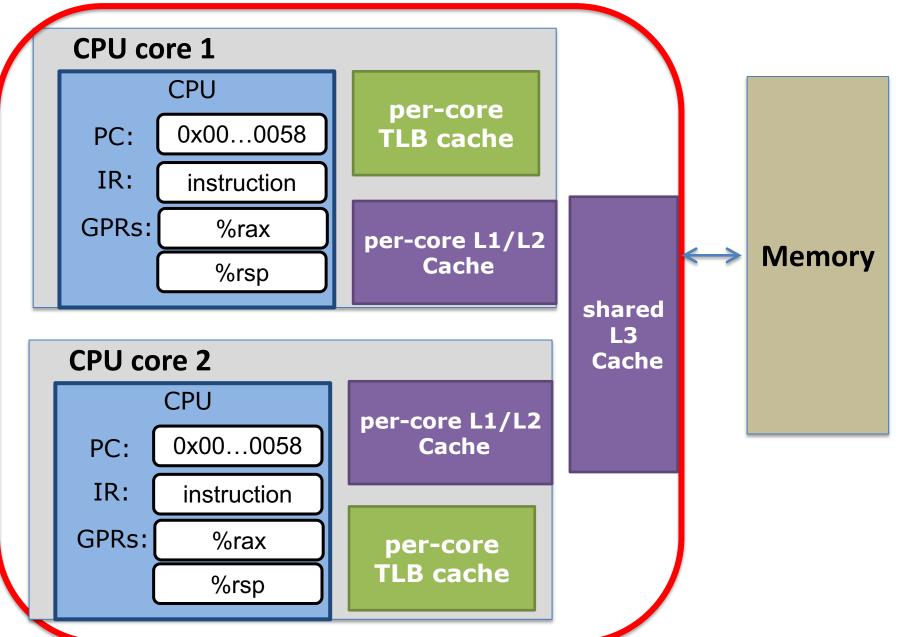
#2 exceptions: OS takes control upon exceptions

#3 interrupts: OS takes control upon interrupts



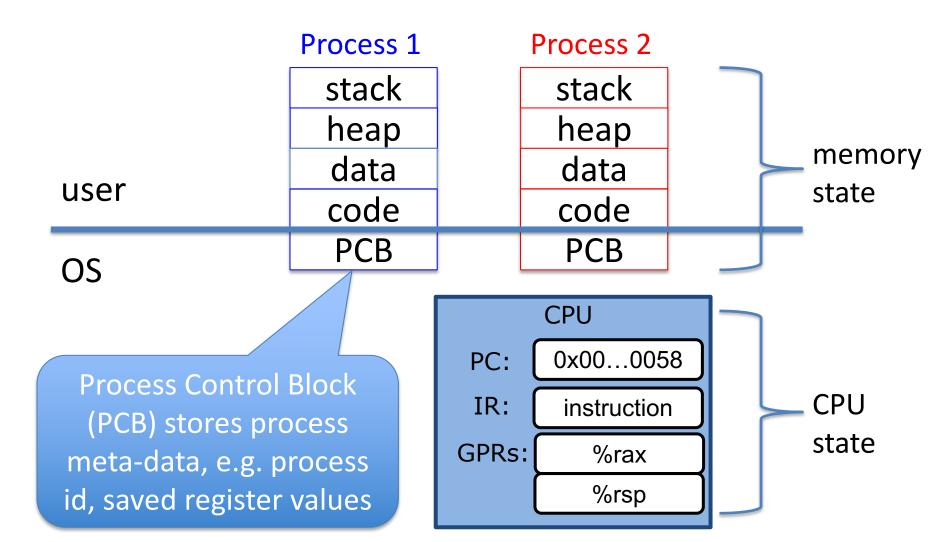
Multi-processing

Goal of multi-processing


- Run multiple processes "simultaneously"
- Why?
 - listening to music while writing your lab
 - Running a web server, a database server, a PHP program together

Modern CPUs have multiple cores

Your mental model of the CPU as a single core machine


Modern CPUs have multiple cores

How to multi-process?

- Execute one process exclusive on each core?
 2 cores → 2 processes only (...)
- How to "simultaneously" execute more processes than there are cores?

Multiprocessing (e.g. on a single core machine)

Creating and killing processes

- One process creates another process via syscall fork()
 - All processes are created by some processes (a tree).
 - The first process is a special one (init) and is created by OS.
 - When launching a program via command-line, the shell program creates the process

The fork syscall

- OS creates a new child process (almost completely) identical to the parent process
- Same code, data, heap, stack, register state except different return values of the fork syscall
- Returns child process's id in parent process
- Returns zero in the child process

"called once, returned twice"

```
void main()
{
  pid_t pid = fork();
  assert(pid >= 0);
  if (pid == 0) {
    printf("In child");
  } else {
    printf("In parent, child pid=%d\n", pid);
  }
```

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

process 1

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
        } else {
            printf("In parent...\n");
        }
    }
}
```

process 1

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

process 1

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

process 1

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

process 2

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

output:

In parent...

process 1

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

process 2

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

output:

In parent...

process 1

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

process 2

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
        } else {
            printf("In parent...\n");
        }
    }
}
```

output:

In parent...

process 1

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
}
```

process 2

```
void
main() {
    pid_t pid = fork();
    assert(pid >= 0);
    if (pid == 0) {
        printf("In child");
    } else {
        printf("In parent...\n");
    }
```

output:

In parent...

In child

Notes on fork

- Execution of parent and child are concurrent
 - interleaving is non-deterministic.
 - In the example, both outputs are possible

In parent	In child
In child	In parent

 Parent and child have separate address space (but their contents immediately after fork are identical)

Another fork example

```
void main()
```

- {
- 1: printf("hello\n");

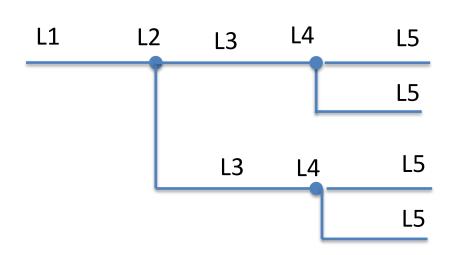
```
2: fork();
```

- 3: printf("world\n");
- 4: fork();

```
5: printf("bye\n");
```

}

How many processes are created in total?


Another fork example

void main()

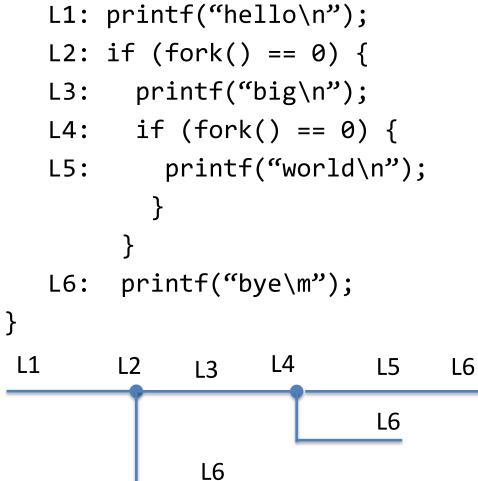
{

}

- L1: printf("hello\n");
- L2: fork();
- L3: printf("world\n");
- L4: fork();
- L5: printf("bye\n");

hello	hello
world	world
world	bye
bye	bye
bye	world
bye	bye
bye	bye

What are the possible printouts?


<
hello
world
world
world
bye
bye
bye

Exercise

```
void main()
```

{

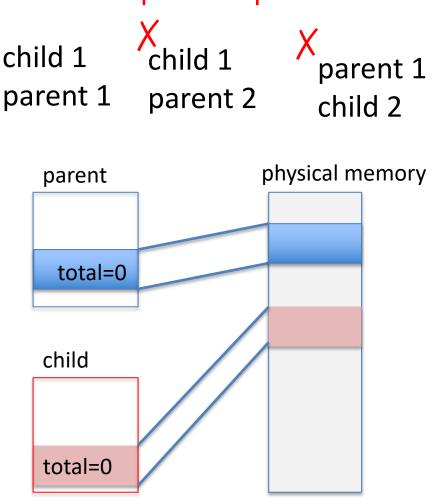
What are the possible printouts?

		V
hello	hello	hello
big	bye	bye
world	big	, big
bye	bye	bye
bye	world	, bye
bye	bye	, world

Parent and child have separate address space with (initially) idential content

```
What are the possible printouts?
void main()
{
                                              X
child 1
                                    child 1
   int total = 0;
                                                            parent 1
                                    parent 1
                                               parent 2
  pid_t pid = fork();
                                                            child 2
   assert(pid >= 0);
                                       parent
   total++;
   if (pid == 0)
      printf("child %d\n",
                                       total=0
total);
   else
      printf("parent %d\n",
total);
}
```

Parent and child have separate address space with (initially) idential content



Parent and child have separate address space with (initially) idential content

```
What are the possible printouts?
void main()
                                   child 1
   int total = 0;
   pid t pid = fork();
   assert(pid >= 0);
   total++;
   if (pid == 0)
      printf("child %d\n");
   else
      printf("parent %d\n");
```

{

}

wait: synchronize with child

 Parent process could wait for the exit of its child process(es).

- int waitpid(pid_t pid, int * child_status, ...)

- Good practice for parent to wait
 - Otherwise, some OS process state about the child cannot be freed even after child exits
 - leaks memory

Exercise

What are the possible printouts?

```
void
main() {
  pid_t pid = fork();
  assert(pid >= 0);
  if (pid == 0) {
    printf("child");
  } else {
    printf("parent");
  }
```

child	parent
parent	child

Exercise

```
void
main() {
  pid_t pid = fork();
  assert(pid >= 0);
  if (pid == 0) {
    printf("child");
  } else {
    waitpid(pid, NULL, 0);
    printf("parent");
  }
```

What are the possible printouts?

child Xparent parent child

execv: load program in current process

int execv(char *filename, char *argv[])

overwrites code, data, heap, stack of existing process (retains process pid)

• called once, never returns

Example

```
void main() {
   pid t pid;
   pid = fork();
   if (pid == 0) {
      execv("/bin/echo", "hello");
      printf("world\n").
   }
   waitpid(pid, NULL, 0);
   printf("bye\n");
}
```

Never executed because execv has replaced process's memory with that of the echo program

How many processes are created in total? output? 2 hello bye