
User program and OS interaction
Multiprocessing

Jinyang Li & Shuai Mu

What we’ve learnt so far
• Machine instructions
– compiler translates C to x86 instructions
– x86 instructions are executed by CPU hardware only

• Dynamic memory allocator
– realized as a library implementation

• Virtual memory
– each process has its own virtual address space
– VM is realized by a combination of hardware mechanism

and OS implementation
• MMU performs address translation
• OS populates page table

Today’s lesson plan

1. Interaction between user programs and OS
2. Multiprocessing

Interaction between user programs
and OS

I mean OS kernel

ProcessProcess

Applications, OS, Hardware

Hardware CPU Memory I/O

Operating System

Applications

Process Process

The role of OS

Applications

OS

Hardware

1. Manage resources among
running programs

2. Hide messy hardware details

Purpose of the OS software

1.1 Scheduling (give each process
the illusion of exclusive CPU use)
1.2 VM management (give each
process the illusion of exclusive
memory use)
2. file systems, networking, I/O

Concrete jobs of the OS

Process
• Process is an instance of a running program
– when you type ./a.out, a process is launched
– when you type Ctrl-C, the process is killed

• Each process corresponds to some state in OS
– process identifier (process id)
– user id
– status (e.g. runnable or blocked)
– saved rip and other registers
– VM structure (including its page table)

Only OS can
modify these
data

How to protect the OS from user
processes?

• Hardware provides privileged vs. non-privileged
mode of execution

• OS runs in privileged mode
– can change content of CR3 (points to root page table)
– can access VA marked as supervisor only
– ...

• User programs run in non-privileged mode
– cannot access kernel data structures because they are

stored in VA marked as supervisor only

also called
supervisor/kernel
mode

also called
user mode

How to get into privileged mode?
Hardware provides 3 controlled mechanisms to switch
from non-privileged to privileged execution:
1. Traps
– syscalls (user programs explicitly ask for OS help)

2. Exception (caused by the current running program)
– e.g. divide by zero, page fault

3. Interrupt (caused by external events)
– timer, device events e.g. keyboard press, packet arrival

How to get out of privileged mode?

• OS uses the special hardware instruction iret
• OS may return to the same program or

context switch to execute a different program

#1 Traps:
Syscall: User à OS

• User programs ask for OS services using syscalls
– it’s like invoking a function in OS

• Each syscall has a known number
0 read
1 write
2 open
3 close

...
57 fork
59 execve
60 exit
62 kill

C library wraps
these syscalls to
provide file I/O

linux syscall number

Syscall: user à OS

syscall 2

user code OS code
movq %rax, %rbx
inc %rbx
...

iret

movq %rax, %r8
add %r8, %r9
...

...

...

...

...

...

...

...

...

...

code to open
the requested file

Assuming OS wants to execute
the same process next; it does

not have to

user code OS code

#2 exceptions:
OS takes control upon exceptions

addq %rax, %rbx
...
mov (%rbx) %r8
...
...
...
....
....

...

...

...

...

...

check process VM
structure. If VA is legit,
create page table mapping.
Otherwise kill process ...

iret

hardware exception due
to address of (%rbx)
leading to invalid page
table entry

user code OS code

#3 interrupts:
OS takes control upon interrupts

addq %rax, %rbx
...
...
...
...
....
....
...

...

...

...

...

...

process packets
e.g. send acknowledgement
packets

...
iret

interrupts due packet
arrival from the network
card

Multi-processing

Goal of multi-processing

• Run multiple processes “simultaneously”
• Why?
– listening to music while writing your lab
– Running a web server, a database server, a PHP

program together

Modern CPUs have multiple cores

CPU

0x00…0058PC:

IR: instruction

GPRs: %rax

...

%rsp

Your mental model of the CPU as a single core machine

TLB

CPU Cache

Memory

Modern CPUs have multiple cores

CPU

0x00…0058PC:

IR: instruction

GPRs: %rax

%rsp

per-core
TLB cache

per-core L1/L2
Cache Memory

CPU core 1

CPU

0x00…0058PC:

IR: instruction

GPRs: %rax

%rsp
per-core

TLB cache

per-core L1/L2
Cache

CPU core 2
shared

L3
Cache

How to multi-process?

• Execute one process exclusive on each core?
– 2 cores à 2 processes only

• How to “simultaneously” execute more
processes than there are cores?

Multiprocessing
(e.g. on a single core machine)

Process 1
stack
heap
data
code
PCB

Process 2
stack
heap
data
code
PCB

user

OS

Process Control Block
(PCB) stores process

meta-data, e.g. process
id, saved register values

memory
state

CPU

0x00…0058PC:

IR: instruction

GPRs: %rax
%rsp

CPU
state

Context switch
Process P1 OS code

...

...

...

Process P2

...

...

...

...4. context
switch to where
P1 previously
left off

every
10ms

...

...

...

1. timer
interrupt • decide it’s P’s turn

• save current process’
CPU state

• restore P’s saved
CPU state
iret

3. timer
interrupt

2. context
switch to where
P2 previously left
off

Creating and killing processes

• One process creates another process via
syscall fork()
– All processes are created by some processes (a

tree).
– The first process is a special one (init) and is

created by OS.
– When launching a program via command-line, the

shell program creates the process

The fork syscall

• OS creates a new child process (almost
completely) identical to the parent process

• Same code, data, heap, stack, register state
except different return values of the fork syscall

• Returns child process’s id in parent process
• Returns zero in the child process

“called once, returned twice”

Example fork call

void main()
{

pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {

printf(“In child”);
} else {

printf(“In parent, child pid=%d\n”, pid);
}

}

Example fork call

void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 1

Example fork call

void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 1
void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 2

Example fork call

void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 1
void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 2

Example fork call

void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 1
void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 2

Example fork call

void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 1
void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 2

In parent...
output:

Example fork call

void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 1
void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 2

In parent...
output:

Example fork call

void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 1
void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 2

In parent...
output:

Example fork call

void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 1
void
main() {
pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {
printf(“In child”);

} else {
printf(“In parent...\n”);

}
}

process 2

In parent...
output:

In child

Notes on fork
• Execution of parent and child are concurrent
– interleaving is non-deterministic.
– In the example, both outputs are possible

• Parent and child have separate address space
(but their contents immediately after fork are
identical)

In parent...
In child

In child
In parent...

Another fork example

void main()
{

printf(“hello\n”);
fork();
printf(“world\n”);
fork();
printf(“bye\n”);

}

1:
2:
3:
4:
5:

How many processes are created in total?

Another fork example
void main()
{

L1: printf(“hello\n”);
L2: fork();
L3: printf(“world\n”);
L4: fork();
L5: printf(“bye\n”);

}

L1 L2 L4

L3 L4

L5

L5

L5

L5

What are the possible printouts?

hello
world
world
bye
bye
bye
bye

L3

hello
world
bye
bye
world
bye
bye

hello
world
world
world
bye
bye
bye

✗

Exercise
void main()
{

L1: printf(“hello\n”);
L2: if (fork() == 0) {
L3: printf(“big\n”);
L4: if (fork() == 0) {
L5: printf(“world\n”);

}
}

L6: printf(“bye\m”);
}

L1 L2 L5L4

L6

L6

L3 L6

What are the possible printouts?

hello
big
world
bye
bye
bye

hello
bye
big
bye
world
bye

hello
bye
big
bye
bye
world

✗

Parent and child have separate address
space with (initially) idential content

void main()
{

int total = 0;
pid_t pid = fork();
assert(pid >= 0);
total++;
if (pid == 0)

printf(“child %d\n”,
total);

else
printf(“parent %d\n”,

total);
}

What are the possible printouts?

child 1
parent 1

child 1
parent 2

parent 1
child 2

✗✗

total=0

parent

Parent and child have separate address
space with (initially) idential content

void main()
{

int total = 0;
pid_t pid = fork();
assert(pid >= 0);
total++;
if (pid == 0)

printf(“child %d\n”);
else

printf(“parent %d\n”);
}

What are the possible printouts?

child 1
parent 1

child 1
parent 2

parent 1
child 2

✗✗

total=0

parent

total=0

child

Parent and child have separate address
space with (initially) idential content

void main()
{

int total = 0;
pid_t pid = fork();
assert(pid >= 0);
total++;
if (pid == 0)

printf(“child %d\n”);
else

printf(“parent %d\n”);
}

What are the possible printouts?

child 1
parent 1

child 1
parent 2

parent 1
child 2

✗✗

total=0

parent

total=0

child

physical memory

wait: synchronize with child

• Parent process could wait for the exit of its
child process(es).
– int waitpid(pid_t pid, int * child_status, ...)

• Good practice for parent to wait
– Otherwise, some OS process state about the child

cannot be freed even after child exits
– leaks memory

Exercise

void
main() {

pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {

printf(“child”);
} else {

printf(“parent”);
}

}

What are the possible printouts?

child
parent

parent
child

Exercise

void
main() {

pid_t pid = fork();
assert(pid >= 0);
if (pid == 0) {

printf(“child”);
} else {

waitpid(pid, NULL, 0);
printf(“parent”);

}
}

What are the possible printouts?

child
parent

parent
child
✗

execv: load program in current
process

• int execv(char *filename, char *argv[])
– overwrites code, data, heap, stack of existing

process (retains process pid)
• called once, never returns

Example
void main() {

pid_t pid;
pid = fork();
if (pid == 0) {

execv(“/bin/echo”, “hello”);
printf(“world\n”);

}
waitpid(pid, NULL, 0);
printf(“bye\n”);

}

How many processes are created in total? output?
2 hello bye

Never executed
because execv has
replaced process’s
memory with that

of the echo program

