usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Incremental Consistency Guarantees
for Replicated Objects

Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi,
Ecole Polytechnique Fédérale de Lausanne (EPFL)

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/guerraoui

This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI '16).
November 2-4, 2016 - Savannah, GA, USA
ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems
Design and Implementation

is sponsored by USENIX.

Incremental Consistency Guarantees for Replicated Objects

Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi*

School of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

{rachid.guerraoui, matej.paviovic, dragos-adrian.seredinschi} @epfl.ch

Abstract

Programming with replicated objects is difficult. De-
velopers must face the fundamental trade-off between
consistency and performance head on, while struggling
with the complexity of distributed storage stacks. We in-
troduce Correctables, a novel abstraction that hides most
of this complexity, allowing developers to focus on the
task of balancing consistency and performance. To aid
developers with this task, Correctables provide incre-
mental consistency guarantees, which capture successive
refinements on the result of an ongoing operation on a
replicated object. In short, applications receive both a
preliminary—fast, possibly inconsistent—result, as well
as a final—consistent—result that arrives later.

We show how to leverage incremental consistency
guarantees by speculating on preliminary values, trading
throughput and bandwidth for improved latency. We ex-
periment with two popular storage systems (Cassandra
and ZooKeeper) and three applications: a Twissandra-
based microblogging service, an ad serving system, and
a ticket selling system. Our evaluation on the Amazon
EC2 platform with YCSB workloads A, B, and C shows
that we can reduce the latency of strongly consistent op-
erations by up to 40% (from 100ms to 60ms) at little cost
(10% bandwidth increase, 6% throughput drop) in the
ad system. Even if the preliminary result is frequently
inconsistent (25% of accesses), incremental consistency
incurs a bandwidth overhead of only 27%.

1. Introduction

Replication is a crucial technique for achieving
performance—i.e., high availability and low latency—
in large-scale applications. Traditionally, strong consis-
tency protocols hide replication and ensure correctness
by exposing a single-copy abstraction over replicated ob-
jects [26, 46]. There is a trade-off, however, between
consistency and performance [14, 21, 33]. Weak consis-
tency [28] boosts performance, but introduces the possi-
bility of incorrect (anomalous) behavior.

* Author names appear in alphabetical order.

A common argument in favor of weak consistency is
that such anomalous behavior is rare in practice. Indeed,
studies reveal that on expectation, weakly consistent val-
ues are often correct even with respect to strong consis-
tency [19, 55]. Applications which primarily demand
performance thus forsake stronger models and resort to
weak consistency [16, 28].

There are cases, however, where applications often di-
verge from correct behavior due to weak consistency. As
an extreme example, an execution of YCSB workload
A [25] in Cassandra [45] on a small 1K objects dataset
can reveal stale values for 25% of weakly consistent read
operations (Figure 7 in §6). This happens when using
the Latest distribution, where read activity is skewed to-
wards popular items [25]. In other cases, even very rare
anomalies are unacceptable (e.g., when handling sensi-
tive data such as user passwords), making strongly con-
sistent access a necessity. For this class of applications,
correctness supersedes performance, and strong consis-
tency thus takes precedence [26].

There is also a large class of applications which do
not have a single, clear-cut goal (either performance or
correctness). Instead, such applications aim to satisfy
both of these conflicting demands. These applications
fall in a gray zone, somewhere in-between the two previ-
ous classes, as we highlight in Figure 1. Typically, these
applications aim to strike an optimal balance of consis-
tency and performance by employing different consis-
tency models, often at the granularity of individual op-
erations [18, 24, 43, 51, 66]. Choosing the appropriate
consistency model, even at this granularity, is hard, and

Strong A

>
(9}
— | S Gray
L8 [5a
o £ téog Zone
(8] . . o .
g o 28 (no single choice is ideal
o ol e
0o :
Weaker Consistency
—_—
Weak N

.
Low [Demand for Performance] High

Figure 1: Many applications fall into a gray zone, torn
between the need for both performance and correctness.

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation 169

the result is often sub-optimal, as developers still end up
with fixing a certain side of the consistency/performance
trade-off (and sacrificing the other side).

Moreover, programming in the gray area is diffi-
cult, as developers have to juggle different consistency
models in their applications [24, 43]. If programming
with a single consistency model (such as weak consis-
tency [26]) is non-trivial, then mixing multiple models
is even harder [50]. In their struggle to optimize perfor-
mance with consistency, developers must go up against
the full complexity of the underlying storage stack. This
includes choosing locations (cache or backup or primary
replica), dealing with coherence and cache-bypassing, or
selecting quorums. These execution details reflect as a
burden on developers, complicate application code, and
lead to bugs [31, 55].

Our goal is to help with the programming of applica-
tions located in the gray area. We accept as a fact that no
single consistency model is ideal, providing both high
performance and strong consistency (correctness) at the
same time [14, 33]. Our insight is to approach this ideal
in complementary steps, by combining consistency mod-
els in a single operation. Briefly, developers can invoke
an operation on a replicated object and obtain multiple,
incremental views on the result, at successive points in
time. Each view reflects the operation result under a
particular consistency model. Initial (preliminary) views
deliver with low latency—but weak consistency—while
stronger guarantees arrive later. We call this approach
incremental consistency guarantees (ICG).

We introduce Correctables, an abstraction which
grants developers a clean, consistency-based interface
for accessing replicated objects, clearly separating se-
mantics from execution details. This abstraction reduces
programmer effort by hiding storage-specific protocols,
e.g., selecting quorums, locations, or managing coher-
ence. Correctables are based on Promises [53], which
are placeholders for a single value that becomes avail-
able in the future. Correctables generalize Promises by
representing not a single, but multiple future values, cor-
responding to incremental views on a replicated object.

To the best of our knowledge, our abstraction is the
first which enables applications to build on ICG. As few
as two views suffice for ICG to be useful. The advan-
tage of ICG is that applications can speculate on the pre-
liminary view, hiding the latency of strong consistency,
and thereby improving performance [71]. Speculating
on preliminary responses is expedient considering that,
in many systems, weak consistency provides correct re-
sults on expectation [19, 55].

Speculation with ICG is applicable to a wide range
of scenarios. Consider, for instance, that a single
application-level operation can aggregate multiple—up
to hundreds of—storage-level objects [16, 27, 52, 65].

Since these objects are often inter-dependent, they can
not always be fetched in parallel. With ICG, the appli-
cation can use the fast preliminary view to speculatively
prefetch any dependent objects. By the time the final
(strongly consistent) view arrives, the prefetching would
also finish. If the preliminary result was correct (match-
ing the final one), then the speculation is deemed suc-
cessful, reducing the overall latency of this operation.

Alternatively, ICG can open the door to exploit-
ing application-specific semantics for optimizing per-
formance. Imagine an application requiring a mono-
tonically increasing counter to reach some pre-defined
threshold (e.g., number of purchased items in a shop re-
quired for a fidelity discount). If a weakly consistent
view of the counter already exceeds this threshold, the
application can proceed without paying the latency price
of a strongly consistent view.

The high-level abstraction centered on consistency
models, coupled with the performance benefits of en-
abling speculation via ICG, are the central contributions
of Correctables. We evaluate these performance benefits
by modifying two well-known storage systems (Cassan-
dra [45] and ZooKeeper [39]). We plug Correctables on
top of these, build three applications (a Twissandra-based
microblogging service [10], an ad serving system, and a
ticket selling system), and experiment on Amazon EC2.

Our evaluation first demonstrates that there is a siz-
able time window between preliminary and final views,
which applications can use for speculation. Second, us-
ing YCSB workloads A, B, and C, we show that we can
reduce the latency of strongly consistent operations by up
to 40% (from 100ms to 60ms) at little cost (10% band-
width increase, 6% throughput drop) in the ad system.
The other two applications exhibit similar improvements.
Even if the preliminary result is often inconsistent (25%
of accesses), incremental consistency incurs a bandwidth
overhead of only 27%.

In the rest of this paper, we overview our solution in
the context of related work (§2) and present the Correcta-
bles interface (§3). We show how applications use Cor-
rectables (§4), and describe the bindings to various stor-
age stacks (§5). We then give a comprehensive evalua-
tion (§6) and conclude (§7).

2. Overview & Related Work

This paper addresses the issue of programming and spec-
ulating with replicated objects through a novel abstrac-
tion called Correctables. In this section, we overview the
main concepts behind Correctables, and we contrast our
approach with related work.

2.1 Consistency Choices

There is an abundance of work on consistency models.
These range from strong consistency protocols [40, 46,

170 12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

68], some optimized for WAN or a specific environ-
ment [26, 29, 44, 48, 72, 74], through intermediary mod-
els such as causal consistency [30, 54], to weak consis-
tency [28, 67]. As arecent development, storage systems
offer multiple—i.e., differentiated—consistency guaran-
tees [24, 43, 62]. This allows applications in the above-
mentioned gray zone to balance consistency and perfor-
mance on a per-operation basis: the choice of guarantees
depends on how sensitive the corresponding operation is.

Differentiated guarantees can take the form of
SLAs [66], policies attached to data [43], dynamic quo-
rum selection for quorum-based storage systems such as
Dynamo [28] or others [8, 45], or even ad-hoc opera-
tion invariants [18]. In practice, two consistency levels
often suffice: weak and strong [1, 5]. Sensitive opera-
tions (e.g., account creation or password checking) use
the strong level, while less critical operations (e.g., re-
move from basket) use weak guarantees [43, 66, 73] to
achieve good performance.

For instance, in Gemini [51], operations are either
Blue (fast, weakly consistent) or Red (slower, strongly
consistent). For sensitive data such as passwords, Face-
book uses a separate linearizable sub-system [55]. Like-
wise, Twitter employs strong consistency for “certain
sets of operations” [64], and Google’s Megastore ex-
poses strong guarantees alongside read operations with
“inconsistent” semantics [20]. Another frequent form
of differentiated guarantees appears when applications
bypass caches to ensure correctness for some opera-
tions [16, 60].

Given this great variety of differentiated guarantees,
we surmise that applications can benefit from mixing
consistency models. The notable downside of this ap-
proach is that application complexity increases [50]. De-
velopers must orchestrate different storage APIs and con-
sider the interactions between these protocols [16, 18,
69]. Our work subsumes results in this area. We propose
to hide different schemes for managing consistency un-
der a common interface, Correctables, which can abstract
over a varying combination of storage tiers and reduce
application complexity. In addition, we introduce the no-
tion of incremental consistency guarantees (ICG), i.e.,
progressive refinement of the result of a single operation.

2.2 ICG: Incremental Consistency Guarantees

Applications which use strong consistency—either ex-
clusively or for a few operations—do so to avoid anoma-
lous behavior which is latent in weaker models. Interest-
ingly, recent work reveals that this anomalous behavior is
rare in practice [19, 55]. There are applications, however,
which cannot afford to expose even those rare anomalies.

For instance, consider a system storing user pass-
words, and say it has 1% chance of exposing an inconsis-
tent password. If such a system demands correctness—

as it should—then it is forced to pay the price for strong
consistency on every access, even though this is not nec-
essary in 99% of cases. We propose ICG to help appli-
cations avert this dilemma, and pay for correctness only
when inconsistencies actually occur.

With ICG, an application can obtain both weakly
consistent (called preliminary) and strongly consistent
(called final) results of an operation, one by one, as these
become available. While waiting for the final result, the
application can speculatively perform further processing
based on the preliminary—which is correct on expecta-
tion. Following our earlier example, this would help hide
the latency of strong consistency for 99% of accesses.

The full latency of strong consistency is only exposed
in case of misspeculation, when the preliminary and final
values diverge because the preliminary returned incon-
sistent data [71]. These are the 1% cases where strong
consistency is needed anyway. Speculation through ICG
can lessen the most prominent argument against strong
consistency, namely its performance penalty. With ICG
we pay the latency cost of strong consistency only when
necessary, regardless of how often this is the case.

Speculation is a well-known technique for improving
performance. Traditionally, the effects of speculation in
a system remain hidden from higher-level applications
until the speculation confirms, since the effects can lead
to irrevocable actions in the applications [41, 57, 59, 71].
Alternatively, it has been shown that leaking speculative
effects to higher layers can be beneficial, especially in
user-facing applications, where the effects can be undone
or the application can compensate in case of misspecu-
lation [36, 47, 49, 61]. We propose to use eventual con-
sistency as a basis for doing speculative work, as a novel
approach for improving performance in replicated sys-
tems. Also, more generally, we allow the application
itself (which knows best), to decide on the speculation
boundary [70]—whether to externalize effects of specu-
lation, and later to undo or compensate these effects, or
whether to isolate users from speculative state.

Besides speculation, ICG is useful in other cases as
well. For instance, applications can choose dynami-
cally whether to settle with a preliminary value and for-
sake the final value altogether. This is a way to obtain
application-specific optimizations, e.g., to enforce tight
latency SLAs. Alternatively, we can expose the prelim-
inary response to users and revise it later when the final
response arrives. This strategy is akin to compensating
in case of misspeculation, as mentioned earlier.

Clearly, not all applications are amenable to exploit-
ing ICG. In Table 1 we give a high-level account on
three categories of applications: (1) those which have no
additional benefit from strong consistency or ICG; (2)
those which require correct results but are not amenable
to speculation; and at last (3) applications that can obtain

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation 171

Category Synopsis Applications and use cases
Use the weakest, but fastest consistenc . . .
7 . y Computation on static (BLOBs) content, e.g., thumbnail gener-
Weak model, e.g., by using partial quorums, or go-
. . . ator for images and videos, accessing cold data, fraud analysis,
Consistency ing to the closest replica or cache. No benefit . Lo . "
disconnected operations in mobile applications, etc.
from ICG.
Stron Use the strongest available model, e.g., by Infrastructure services (e.g., load-balancing, session stores,
Consiste%lc going to the primary replica. Applications re- configuration and membership management services), stock
y quire correct results. tickers, trading applications, etc.
Incremental Use multiple, incremental models. Applica- E-mail, calendar, social network timeline, grocery list, flight
Consistency tions benefit from weakly consistent values search aggregation, online shopping, news reading, browsing,
Guarantees (e.g., by speculating or exposing them), but backup, collaborative editing, authentication and authorization,
(ICG) prefer correct results. advertising, online wallets, etc.

Table 1: Different patterns and their corresponding use cases. Many applications can benefit from ICG.

performance without sacrificing correctness by leverag-
ing ICG.

2.3 Client-side Handling of ICG

To program with ICG, applications need to wait asyn-
chronously for multiple replies to an operation (where
each reply encapsulates a different guarantee on the re-
sult) while doing useful work, i.e., speculate. To the best
of our knowledge, no abstraction fulfills these criteria.
To minimize the effort of programming with ICG, we
draw inspiration from Promises, seminal work on han-
dling asynchronous remote procedure calls in distributed
systems [53].

A Promise is a placeholder for a value that will be-
come available asynchronously in the future. Given
the urgency to handle intricate parallelism and aug-
menting complexity in applications, it is not surpris-
ing that Promises are becoming standard in many lan-
guages [6, 2, 12, 31]. We extend the binary interface of
Promises (a value either present or absent) to obtain a
multi-level abstraction, which incrementally builds up to
a final, correct result.

The Observable interface from reactive programming
can be seen as a similar generalization of Promises. Ob-
servables abstract over asynchronous data streams of ar-
bitrary type and size [56]. Our goal with Correctables,
in contrast, is to grant developers access to consistency
guarantees on replicated objects in a simple manner. The
ProgressivePromise interface in Netty [7] also general-
izes Promises. While it can indicate progress of an oper-
ation, a ProgressivePromise does not expose preliminary
results of this operation.

3. Correctables

This section presents the Correctables interface for pro-
gramming and speculating with replicated data. Applica-
tions use this interface as a library, as Figure 2 depicts. At
the top of this library sits the application-facing API. The
library is connected to the storage stack using a storage
binding, which is a module that encapsulates all storage

o]
‘ Desktop Web ‘ Mobile | | Caching %
Application Frontend App Daemon i%
2t
invoke\ z2
(Weak / Strong) Correctable 2=
Correctables API é
LIBRARY rb’m’duﬁcj SCbinding 3T binding 5 18T
S;U?Dt_ ______ —_—— - —— 1 -_——- Vg [0)
Storage RPC /1\ &\; / f 2 S
[Cache [Cassandra] ZooKeeper £ EJ
L
2
%)

Figure 2: High-level view of Correctables, as an interface to
the underlying storage.

system specific interfaces and protocols. Correctables
fulfill two critical functions: (i) translate API calls into
storage-specific requests via a binding, and (ii) orches-
trate responses from the binding and deliver them—in an
incremental way—to the application, using Correctable
objects. Each call to an API method returns a Correctable
which represents the progressively improving result (i.e.,
a result with ICG).

3.1 From Promises to Correctables

As mentioned earlier, Correctables descend from
Promises. To model an asynchronous task, a Promise
starts in the blocked state and transitions to ready when
the task completes, triggering any callback associated
with this state [53]. Promises help with asynchrony,
but not incrementality. To convey incrementality, a Cor-
rectable starts in the updating state, where it remains
until the final result becomes available or an error oc-
curs (see Figure 3). When this happens, the Correctable
closes with that result (or error), transitioning to the final
(or error) state. Upon each state transition, the corre-
sponding callback triggers. Preliminary results trigger

onFinal
FINAL) Ccallback)
ERROR (callback)

onError

Figure 3: The three states, transitions, and callbacks
associated with a Correctable.

update(newView)
close(view)

onUpdate
(callback)

close(error)

172

12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

a same-state transition (from updating to updating). A
Correctable can have callbacks associated with each of
its three states. To attach these callbacks, we provide
the setCallbacks method; together with speculate,
these two form the two central methods of a Correctable,
which we examine more closely in §4.

3.2 Decoupling Semantics from Implementation

The Correctables abstraction decouples applications
from storage specifics by adopting a thin, consistency-
based interface, centered around consistency levels.
This enables developers—who naturally reason in terms
of consistency rather than protocol specifics—to ob-
tain simple and portable implementations. With Cor-
rectables, applications can transparently switch storage
stacks, as long as these stacks support compatible con-
sistency models.

Our API consists of three methods:

1. invokeWeak(operation),
2. invokeStrong(operation), and
3. invoke(operation|, levels]).

The first two allow developers to select either weak or
strong consistency for a given operation. The returned
Correctable never transitions from updating to updating
state and only closes with a final value (or error). These
two methods follow the traditional practice of providing
a single result which lies at one extreme of the consisten-
cy/performance trade-off.

The third method provides ICG, allowing developers
to operate on this trade-off at run-time, which makes
it especially relevant for applications in the above-
mentioned gray area. Instead of a single result (as is the
case with the two former methods), invoke provides in-
cremental updates on the operation result. Optionally,
invoke accepts as argument the set of consistency lev-
els which the result should—one after the other—satisfy.
If this argument is absent, invoke provides all available
levels. This argument allows some optimizations, e.g., if
an application only requires a subset of the available con-
sistency levels, this parameter informs a binding to avoid
using the extraneous levels; we omit further discussion
of this argument due to space constraints. The available
consistency levels depend on the underlying storage sys-
tem and binding, which we discuss in more detail in §5.

In the next section, we show how to program with
Correctables through several representative use-cases. In
code snippets we adopt a Python-inspired pseudocode
for readability sake. For brevity we leave aside error han-
dling, timeouts, or other features inherited from modern
Promises, such as aggregation or monadic-style chain-
ing [12, 31, 53].

L N R S

from pylons import app_globals as g # cache access
from r2.1lib.db import queries # backend access

def user_messages(user, update = False):
key = messages_key(user._id)
trees = g.permacache.get (key)
if not trees or update:
trees = user_messages_nocache (user)
g.permacache.set (key, trees) # cache coherence
return trees
def user_messages_nocache(user):
Just like user_messages , but avoiding the cache. ..

Listing 1: Different consistency guarantees in Reddit [13], as
an example of tight coupling between applications and storage.
Developers must manually handle the cache and the backend.

def user_messages(user, strong = False):
key = messages_key(user._id)
coherence handled by invoke* functions in bindings
if strong: return invokeStrong(get(key))
else: return invokeWeak(get (key))

Listing 2: Reddit code rewritten using Correctables.

4. Correctables in Action

This section presents examples of how Correctables can
be useful on two main fronts. (1) Decoupling applica-
tions from their storage stacks by providing an abstrac-
tion based on consistency levels. (2) Improving applica-
tion performance by means of ICG, e.g., via speculation
or exploiting application-specific semantics.

4.1 Decoupling Applications from Storage

We first discuss a simple case of decoupling, where we il-
lustrate the use the first two functions in our API, namely
invokeWeak and invokeStrong. As discussed in §2,
many applications differentiate between weak and strong
consistency to balance correctness with performance. In
practice, applications often resort to ad-hoc techniques
such as cache-bypassing to achieve this, which compli-
cates code and leads to errors [16, 31]. Listing 1 shows
code from Reddit [13], a popular bulletin-board system
and a prime example of such code. Developers have to
explicitly handle cache access (lines L6 and L9), make
choices based on presence of items in the cache (L7),
manually bypass the cache (L.8) under specific condi-
tions, and write duplicate code (L12).

Instead of explicit cache-bypassing, we can em-
ploy invokeWeak and invokeStrong to substantially
simplify the code by replacing ad-hoc abstractions
like user_messages and user_messages_nocache, as
Listing 2 shows. Furthermore, we can replace other near-
identical functions for differentiated guarantees, elimi-

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation

173

invoke(read(...))
.speculate(speculationFunc[, abortFunc])
.setCallbacks(onFinal = (res) => deliver(res))

Listing 3: Generic speculation with Correctables. The square
brackets indicate that abortFunc is optional.

nating duplicate logic.! Cache-coherence and bypassing
is completely handled by the storage-specific binding.
This reduces both programmer effort and application-
level complexity.

The third method in our library is invoke. Correcta-
bles are crucial for this method, since it captures ICG.
invoke allows applications to speculate on preliminary
values (hiding the latency of strong consistency), or ex-
ploit application-specific semantics, as we show next.

4.2 Speculating with Correctables

Many applications are amenable to speculating on pre-
liminary values to reap performance benefits. To under-
stand how to achieve this, we consider any non-trivial op-
eration in a distributed application which involves read-
ing data from storage. Using invoke to access the stor-
age, applications can perform speculation on the prelim-
inary value. If this preliminary value is confirmed by
the final value, then speculation was correct, reducing
overall latency [71]. Examples where speculation applies
include password checking or thumbnail generation (as
mentioned in [66]), as well as operations for airline seat
reservation [73], or web shopping [43].

Listing 3 depicts how this is performed in practice with
Correctables. Even though such speculation can be or-
chestrated directly by using the onUpdate and onFinal
callbacks of a Correctable object, we provide a conve-
nience method called speculate that captures the spec-
ulation pattern (L2). It takes a speculation function as
an argument, applying it to every new view delivered
by the underlying Correctable if this view differs from
the previous one. The speculate method returns a new
Correctable object which closes with the return value of
the user-provided speculation function. If the final view
matches a preliminary one (which is the common case),
the new Correctable can close immediately when the fi-
nal view becomes available, confirming the speculation.
Otherwise, it closes only after the speculation function is
(automatically) re-executed with correct input. In the lat-
ter case, an optional abort function is executed, undoing
potential side-effects of the preceding speculation. Next,
we discuss an ad serving system as an example applica-
tion that can benefit from such speculation.

!Similar pairs of ad-hoc functions exist in Reddit for accessing
other objects. Perhaps accidentally, these other functions contain com-
ments referring to user_messages instead of their specific objects.
We interpret this as a strong indication of “copy-pasting” code, which
Correctables would help prevent.

1
2
3
4

def fetchAdsByUserId(uid):
invoke (getPersonalizedAdsRefs(uid))
.speculate(getAds) # fetch & post—process ads
.setCallbacks(onFinal = (ads) => deliver(ads))

Listing 4: Example of applying speculation in an advertising
system to hide latency of strong consistency.

Advertising System. Typically, ads are personalized to
user interests. These interests fluctuate frequently, and
so ads change accordingly [42]. Given their revenue-
based nature, advertising systems have conflicting re-
quirements, as they aim to reconcile consistency (fresh-
ness of ads) with performance (latency) [24, 26]. We thus
find that they correspond to our notion of gray area, and
are a suitable speculation use-case.

Listing 4 shows how we can use ICG while fetching
ads. First, we obtain a list of references to personalized
ads using the invoke method (L2). This method returns
both a preliminary view (with weak guarantees) and a fi-
nal (fresh) view. Using the references in the preliminary
view, we fetch the actual ads content and media, and do
any post-processing, such as localization or personaliza-
tion (L3). If the final view corresponds to the prelim-
inary, then speculation was correct, and we can deliver
(L4) the ads fast; otherwise, getAds re-executes on the
final view, and we deliver the result later. We use this
application as our first experimental case-study (§6.3.2).

The pattern of fetching objects based on their
references—which themselves need to be fetched first—
is widespread. It appears in many applications, such as
reading the latest news, the most recent transactions, the
latest updates in a social network, an inventory, the most
pressing items in a to-do list or calendar, and so on. In
all these cases, the application needs to chase a pointer
(reference) to the latest data, while weak consistency
can reveal stale values, which is undesirable. We avoid
stale data by reading the references with invoke, and
we mask the latency of the final value by speculatively
fetching objects based on the preliminary reference.

4.3 Exploiting Application Semantics

Applications can exploit their specific semantics to lever-
age the preliminary and the final values of invoke. For
instance, consider the web auction system mentioned by
Kraska et al. [43], where strong consistency is critical in
the last moments of a bid, but is not particularly helpful
in the days before the bid ends, when contention is very
low and anomalous behavior is unlikely. Another exam-
ple is selling items from a predefined stock of such items.
If a preliminary response suggests that the stock is still
big, it is safe to proceed with a purchase. Otherwise, if
the stock is almost empty, it would be better to wait for
the arrival of the final response. This is the case, for in-
stance, for a system selling tickets to an event, which we
describe next.

174

12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

|
2
3
4
5
6
7
8
9
10
1

def purchaseTicket (eventID):
done = false
invoke (dequeue (eventID)) .setCallbacks (

onUpdate = (weakResult) =>
if weakResult.ticketNr > THRESHOLD:
done = true # many tickets left , so we can buy
confirmPurchase()

onFinal = (strongResult) =>
if not done and strongResult is not null:
confirmPurchase() # we managed to geta ticket
else: display("Sold out. Sorry!"))

Listing 5: Dynamic selection of consistency guarantees in a
ticket selling system. If there are many tickets in the stock, we
can safely use weak consistency.

Selling Tickets for Events. For this application sys-
tem, we depart from the popular key-value data type.
First, as we want to avoid overselling, we need a stronger
abstraction to serialize access to the ticket stock. Sim-
ple read/write objects (without transactional support) are
fundamentally insufficient [37]. Second, we want to
demonstrate the applicability of ICG to other data types.
We thus model the ticket stock using a queue, which is a
simple object, yet powerful enough to avoid overselling.

Event organizers enqueue tickets and retailers dequeue
them. This data type allows us to serialize access to the
shared ticket stock [15, 43]. We assume, however, that
tickets bear no specific ordering (i.e., there is no seat-
ing). Clients are interested in purchasing some ticket, and
it is irrelevant which exact element of the queue is de-
queued. We can thus resort to weak consistency most of
the time, and use strong consistency sparingly. We con-
sider a weakly consistent result of an operation to be the
outcome of simulating that operation on the local state of
a single replica (see §5.2).

Listing 5 shows how we can selectively use strong
consistency in this case, based on the estimated stock
size. For each purchase, retailers use invoke with the
dequeue operation. This yields a quick preliminary re-
sponse, by peeking at the queue tail on the closest replica
of the queue. If the preliminary value indicates that there
are many tickets left (e.g., via a ticket sequence num-
ber, denoting the ticket’s position in the queue), which
is the common case, the purchase can succeed without
synchronous coordination on dequeue, which completes
in the background. This reduces the latency of most pur-
chase operations. As the queue drains, e.g. below a pre-
defined threshold of 20 tickets, retailers start waiting for
the final results, which gives atomic semantics on de-
queuing, but incurs higher latency. This system repre-
sents our second experimental case study (§6.3.2).

4.4 Exposing Data Incrementally

In some cases, it is beneficial to expose even incorrect
(stale) data to the user if this data arrives fast, and amend
the output as more fresh data becomes available. In-
deed, a quick approximate result is sometimes better than

9

invoke (getLatestNews()) .setCallbacks(
onUpdate = (items) => refreshDisplay(items))

Listing 6: Progressive display of news items using
Correctables. The refreshDisplay function triggers with
every update on the news items.

an overdue reply [28, 66]. Many applications update
their output as better results become available. A no-
table example is flight search aggregators [9], or gener-
ally, applications which exhibit high responsiveness by
leaking to the user intermediary views on an ongoing op-
eration [47, 49], e.g., previews to a video or shipment
tracking. We can assist the development of this type of
applications, as we describe next.

Smartphone News Reader. Consider a smartphone
news reader application for a news service replicated
with a primary-backup scheme [66]. Additionally, re-
cently seen news items are stored in a local phone cache.
With ICG provided by Correctables, the application can
be oblivious to storage details. It can use a single logical
storage access to fetch the latest news items, as Listing 6
shows. The binding would translate this logical access
to three actual requests: one to the local cache, resolving
almost immediately, one to the closest backup replica,
providing a fresher view, and one to a more distant pri-
mary replica, taking the longest to return but providing
the most up-to-date news stories.

4.5 Discussion: Applicability of ICG

In a majority of use-cases, we observe that two views
suffice. Correctables, however, support arbitrarily many
views. Note that this does not add any complexity to the
interface and can be useful, as the news reader applica-
tion shows.

There are other examples of applications which can
benefit from multiple views. A notable use-case are
blockchain-based applications (e.g., Bitcoin [58]), where
Correctables can track transaction confirmations as they
accumulate and eventually the transaction becomes an ir-
revocable part of the blockchain, i.e., strongly-consistent
with high probability. This is a use-case we also imple-
mented, but omit for space constraints. In larger quorum
systems (e.g., BFT), Correctables can represent the ma-
jority vote as it settles. Search or recommenders, like-
wise, can benefit from exposing multiple intermediary
results in subsequent updates.”

Intuitively, multiple preliminary views are helpful for
applications requiring live updates. On the one hand,
several preliminary values would make the application
more interactive and offer users a finer sense of progress.
This is especially important when the final result has high
latency (Bitcoin transactions take tens of minutes). On
the other hand, as the replicated system delivers more

2We are grateful to our anonymous OSDI reviewers for this partic-
ularly constructive idea.

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation

175

preliminary views for an operation, less operations can
be sustained and overall throughput drops. Thus, ap-
plications which build on ICG with multiple incremen-
tal views observe a trade-off between interactivity and
throughput. This trade-off can be observed even when
the system delivers only two views (§6.2.1).

In order to be practical, the cost of generating and
exploiting the preliminary values of ICG must not out-
weight their benefits. The cost of generating ICG is
captured in the trade-off we highlighted above; the cost
of exploiting ICG is highly application-dependent. If
used for speculation, the utility of 2+ views depends on
how expensive it is to re-do the speculative work upon
misspeculation. This can range from negligible (simply
display preliminary views) to potentially very expensive
(prefetch bulky data). Additionally, the utility also de-
pends on how often misspeculation actually occurs. This
depends on the workload characteristics: workloads with
higher write ratios elicit higher rates of inconsistencies,
and thus more misspeculations (§6.2.1-Divergence).

There are also cases when using ICG is not an op-
tion. This is either due to the underlying storage pro-
viding a unique consistency model and lacking caches,
or due to application semantics, which can render ICG
unnecessary—we give examples of this in the first two
rows of Table 1. Correctables, however, are benefi-
cial beyond ICG. This abstraction can hide the com-
plexity of dealing with storage-specific protocols, e.g.,
quorum-size selection. The application code thus be-
comes portable across different storage systems.

5. Bindings

Our library handles all the instrumentation around Cor-
rectable objects. This includes creation, state transitions,
callbacks, and the API inherited from Promises [12, 31].
Bindings are storage-specific modules which the library
uses to communicate with the storage. These modules
encapsulate everything that is storage system specific,
and thus draw the separating line between consistency
models—which Correctables expose—and implementa-
tions of these models. In this section, we describe the
binding API, and show how bindings can facilitate effi-
cient implementation of ICG with server-side support.

5.1 Binding API

An instance of our library always uses one specific bind-
ing. A binding establishes: (1) the concrete configuration
of the underlying storage stack (e.g., Memcache on top
of Cassandra) together with (2) the consistency levels of-
fered by this stack, and (3) the implementation of any
storage specific protocol (e.g., for coherence, choosing
quorums). This allows the library to act as a client to the
storage stack.

"

When an application calls an API method (§3.2), the
library immediately returns a Correctable. In the back-
ground, we use the binding API to access the underlying
storage. The binding forwards responses from the stor-
age through an upcall to the library. The library then
updates (or closes) the associated Correctable, executing
the corresponding callback function.

The binding API exposes two methods to the li-
brary. First, consistencyLevels() advertises to
the library the supported consistency levels. It sim-
ply returns a list of supported consistency levels,
ordered from weakest to strongest. In most imple-
mentations, this will probably be a one-liner returning
a statically defined list. =~ The second function is
submitOperation(op, consLevels, callback).
The library uses this function to execute operation op on
the underlying storage, with consLevels specifying the
requested consistency levels. The callback activates
whenever a new view of the result is available. The
binding has to implement the protocol for executing
op and invoke callback once for each requested
consistency level.

Listing 7 shows the implementation of a simple bind-
ing for a primary-backup storage, supporting two con-
sistency levels. A more sophisticated binding could ac-
cess the backup and primary in parallel, or could pro-
vide more than two consistency levels. We designed the
binding API to be as simple as possible; contributors or
developers wishing to support a particular store must im-
plement this API when adding new bindings. We cur-
rently provide bindings to Cassandra and ZooKeeper.

5.2 Efficiency and Server-side Support

On a first glance, ICG might seem to evoke large
bandwidth and computation overheads. Indeed, if the
invoke method comprises multiple independent single-
consistency requests, then storage servers will partly
redo their own work. Also, as the weakly and strongly
consistent values often coincide, multiple responses are
frequently redundant. Such overheads would reduce the
practicality of ICG.

def consistencyLevels():
return [WEAK, STRONG]

def submitOperation(operation, consLevels, callback):
if WEAK in consLevels:
backupResult = queryClosestBackup(operation)
callback(backupResult, WEAK)
if STRONG in consLevels:
primaryResult = queryPrimary(operation)
callback(primaryResult, STRONG)

Listing 7: Simple binding to a storage system with
primary-backup replication.

176

12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

With server-side support, however, we can minimize
these overheads. For instance, we can send a single re-
quest to obtain all the incremental views on a replicated
object. An effective way to do this is to hook into the
coordination mechanism of consistency protocols. This
mechanism is the core of such protocols, and the pro-
vided consistency model and latency depend on the type
of coordination. For example, asynchronous (off the crit-
ical path) coordination ensures eventually consistent re-
sults with low-latency [28]. Coordination through an
agreement protocol, as in Paxos [46], yields linearizabil-
ity [38], but with a higher latency.

Our basic insight is that we can get a good guess of the
result already before coordinating, based on a replica’s
local state. In fact, this same state is being exposed
when asynchronous coordination is employed, and as
we alreay mentioned, this state is consistent on expec-
tation. The replica can leak a preliminary response—
with weak guarantees—to the client prior to coordination
(Figure 4). Moreover, we can reduce bandwidth over-
head by skipping the final response if it is the same as
the preliminary: a small confirmation message suffices,
to indicate that the preliminary response was correct. In-
deed, with such an optimization, ICG has minor band-
width overhead (§6.2.1).

An additional benefit from this approach compared to
sending two independent requests is that it prevents cer-
tain types of unexpected outcomes. For instance, strong
consistency might be more stale than weak consistency
if responses to two independent requests were reordered
by the WAN [66]. Using this approach, we modify two
popular systems—Cassandra and ZooKeeper—to pro-
vide efficient support for ICG. Other techniques (e.g.,
master leases [23]) or replication schemes (e.g., primary-
backup) can provide final views fast, skipping the prelim-
inary altogether.

Cassandra. Cassandra uses a quorum-gathering pro-
tocol for coordination [32]. In our modified version of
Cassandra—called Correctable Cassandra (CC)—the co-
ordinating node sends a preliminary view after obtain-
ing the first result from any replica. This view has low
latency, obtained either locally (if the coordinator is it-
self a replica) or from the closest replica. Our binding

Weak consistency

Binding ¢ |
Response
Request\q (preliminary) Response
Replicated | (final)

Coordination

Strong consistency

Storage

Figure 4: Simple server support for efficient ICG. The storage
system sends a preliminary response before coordinating. Note
that for a single request, the storage provides two responses.

to CC supports two consistency levels, weak (involving
one replica) and strong (involving two or more). To min-
imize bandwidth overhead of invoke, CC uses the con-
firmation messages optimization we mentioned earlier.
ZooKeeper. To demonstrate the versatility of Cor-
rectables, we consider a different data type, namely repli-
cated queues, which ZooKeeper can easily model [11].
Our binding supports operations enqueue and dequeue,
with weak and strong consistency semantics, accessi-
ble via invokeWeak and invokeStrong, respectively;
invoke supplies both consistency models incrementally.
The vanilla ZooKeeper implementation (ZK) has
strong consistency [39]. For efficient ICG, we implement
Correctable ZooKeeper (CZK) by adding a fast path to
ZK: a replica first simulates the operation on its local
state, returning the preliminary (weak) result. After co-
ordination (via the Zab protocol [40]), this replica applies
the operation and returns the strong response.
Causal Consistency and Caching. We also imple-
ment a binding to abstract over a causally consistent store
complemented by a client-side cache. The invoke func-
tion reveals two views: one from cache (very fast, possi-
bly stale), and another from the causally consistent store.
This binding ensures write-through cache coherence, al-
lows cache-bypassing (invokeStrong) or direct cache
access (invokeWeak), e.g., in case of disconnected op-
erations for mobile applications [62]. Given the space
constraints we focus on the two other bindings.

6. Evaluation

Our evaluation focuses on quantifying the benefits of
ICG. Before diving into it, it is important to note that any
potential benefit of ICG is capped by performance gaps
among consistency models. Briefly, if strong consistency
has the same performance as weaker models (or the dif-
ference is negligible) then applications can directly use
the stronger model. This is, however, rarely the case. In
practice, there can be sizable differences—up to orders
of magnitude—across models [17, 66].

We first describe our evaluation methodology, and
then show that such optimization potential indeed exists.
We do so by looking at the performance gaps between
weak and strong consistency in quorum-based (Cassan-
dra) and consensus-based (ZooKeeper) systems. We then
quantify the performance gain of using ICG in three case
studies: a Twissandra-based microblogging service [10],
an ad serving system, and a ticket selling application.

6.1 Methodology

We run all experiments on Amazon’s EC2 with m4.large
instances and a replication factor of 3, with replicas dis-
tributed in Frankfurt (FRK), Ireland (IRL), and N. Vir-
ginia (VRG). Unless stated otherwise, to obtain WAN
conditions, the client is in IRL and uses the replica in

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation 177

FRK; note that colocating the client with its contact
server (i.e., both in IRL) would play to our advantage,
as it would reduce the latency of preliminary responses
and allow a bigger performance gap. We also experiment
with various other client locations in some experiments.

For Cassandra experiments, we compare the baseline
Cassandra v2.1.10 (labeled C), with our modified Cor-
rectable Cassandra (CC). We use superscript notation to
indicate the specific quorum size for an execution, e.g.,
C' denotes a client reading from Cassandra with a read
quorum R =1 (i.e., involving 1 out of 3 replicas). For
the ZooKeeper queue, we compare our modified Cor-
rectable ZooKeeper (CZK) against vanilla ZooKeeper
(ZK), v3.4.8. The cumulative implementation effort as-
sociated with CC and CZK, including three case studies,
is modest, at roughly 3k lines of Java code.

6.2 Potential for Exploiting ICG

To determine the potential of ICG, we examine their be-
havior in practice. Studies show that large load on a sys-
tem and high inter-replica latencies give rise to large per-
formance gaps among consistency models [17, 66]. To
the best of our knowledge, however, there are no stud-
ies which consider a combination of incremental consis-
tency models in a single operation. We first investigate
this behavior in Cassandra and then in ZooKeeper.

6.2.1 Potential for Exploiting ICG in Cassandra

Cassandra can offer us insights into the basic behavior of
ICG in a quorum system. As explained in §5, CC offers
two consistency models: weak, which yields the prelimi-
nary view (R = 1), and strong, giving the final view (R =
2 or R = 3, depending on the requested quorum size).
For write operations, we set W = 1. We use microbench-
marks and YCSB [25] to measure single-request latency
and performance under load, respectively. For each CC
experiment, we run three 60-second trials and elide from
the results the first and last 15 seconds. We report on the
average and 99th percentile latency, omitting error bars
if negligible.

Single-request Latency. We use a microbenchmark
consisting of read-only operations on objects of 100B.
We are interested in the performance gap between pre-
liminary and final views as provided by ICG, and we

. CC preliminary —3
B@i50r * CC final o |+
QE & C mmm
o100 2 99th %ile latency & |7
5 s0- % * o
g5 " § "
<o R=3 | R=2 | R-=1

Figure 5: Single-request latencies in Cassandra for different
quorum configurations. A bigger latency gap means a larger
time window available for speculation.

contrast these with their vanilla counterparts. We thus
compare CC? (R € {1,2}) and CC? (R € {1,3}) with C!
(R=1),C* (R=2),and C? (R = 3). For CC, R has two
values: the read quorum size for the preliminary (weak)
and for the final (strong) replies, respectively.

Figure 5 shows the results for all these configurations,
grouped by their read quorum size. The average latency
of preliminary views—whether it is for CC? or CC*—
follows closely the latency of C!, which coincides with
the 20ms RTT between the client and the coordinator.
Preliminary views reflect the local state on the replica in
FRK, having the same consistency as C'. Final views of
CC? and CC? follow the trend of the requested quorum
size and reflect the behavior of C? and C? respectively.

The performance gap between the preliminary and fi-
nal view for CC? is 20ms. The coordinator (FRK) is
gathering a quorum of two: itself and the closest replica
(IRL). The gap indeed corresponds to the RTT between
these two regions. For CC3, the gap is much larger: up to
140ms for the 99th percentile, due to the larger distance
to reach the third replica (VRG). By speculating on the
preliminary views, applications can hide up to 20ms (or
140ms) of the latency for stronger consistency. In prac-
tice, such differences already impact revenue, as users
are highly-sensitive to latency fluctuations [28, 35].

Performance Under Load. We also study the perfor-
mance gap using YCSB workloads A (50:50 read/write
ratio), B (95:5 read/write ratio), and C (read-only) [25].
To stress the systems and obtain WAN conditions, we de-
ploy 3 clients, one per region, with each client connect-
ing to a remote replica. For brevity, we only report on
the results for the client in IRL and R = {1,2}. Figure 6
presents the average latency as a function of throughput.
We plot the evolution of both the preliminary and final
views individually.

We observe that CC trades in some throughput due
to the load generated on the coordinator, which handles
ICG. We observe this behavior in all three workloads.
This is to be expected, considering the modifications nec-
essary to implement preliminary replies (§5.2). Briefly,
we add another step to every read operation that uses
quorums larger than one. This step, called preliminary
flushing, occurs at any coordinator replica serving read
operations as soon as that replica finishes reading the re-
quested data from its local storage—and prior to gath-
ering a quorum from other replicas. This step generates
additional load on the coordinator replica, explaining the
throughput drop of CC? compared to baselines. Related
work on replicated state machines (RSM) suggests an op-
timization [71] which resembles our flushing technique.
Perhaps unsurprisingly, the optimized RSM exhibits a
similar throughput drop [71, §6.2] as we notice in these
experiments.

The latency gap between preliminary and final views

178 12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

| ¢c'(R=1) = c? (R=2) —0—

cc? preliminary (R=1) ——

CCZfinal (R=2) ~v— |

Workload B (95:5 read/write)

Workload C (read-only)

Workload A (50:50 read/write)

& 250 250 250
£ 200 200 200
2 150 150 150
$ 100 100 100
T 50 50 50

0 0 0

0 200 400 600 800 1000 0 200 400

600 800 1000 0 200 400 600 800 1000

Throughput (ops/sec)

Figure 6: Performance of Correctable Cassandra (CC) compared to baseline Cassandra (C). Note that the measurements for cc?
have two results, one for the preliminary view and another for final. These two have the same throughput but different latencies.

is the same as the one we observe in the microbench-
marks. To conclude, our results confirm that the perfor-
mance gaps while using ICG are noticeable, and hence
there is room for hiding latency.

Divergence. To obtain more insight about the behavior
of ICG, we use CC and the YCSB benchmark to mea-
sure how often preliminary values diverge from final re-
sults. We achieve this by using invoke and comparing
the preliminary view to the final one. We run this ex-
periment with a small dataset of 1K objects. We aim at
obtaining the conditions of a highly-loaded system where
clients are mostly interested in a small (popular) part of
the dataset.

Figure 7 shows our result for a mix of representative
YCSB workloads (A and B) and access patterns (Zipfian
and Latest) with default settings. Notably, workload A
(50:50 read/write) under Latest distribution (read activ-
ity skewed towards recently updated items) exhibits high
divergence, up to 25%. Under such conditions, using
R = 1 would yield many stale results. Indeed, some ap-
plications with high write ratios, e.g., notification or ses-
sion stores [25, 34], tend to use R = 2, even though this
forces all read operations to pay the latency price [19].

In fact, even if less than 1% of accessed objects
are inconsistent, these are typically the most popular
(“linchpin” [16, 60]) objects, being both read- and write-
intensive. Such anomalies have a disproportionate effect
at application-level, since they reflect in many more than
1% application-level operations. Applications with high
update ratios as modeled by workload A, e.g., social net-
works [24], can thus benefit from exploiting ICG to avoid
anomalies.

Workload A-Latest - Workload B-Latest —H—
Workload A-Zipfian --@-- Workload B-Zipfian --©--

= =N N W
[oNé o) o Né) Ne]

—
=)

30 12 180 240 300
#Total client threads

Figure 7: Divergence of preliminary from final (correct) views
in Correctable Cassandra with various YCSB configurations.

%Divergence

Latest distribution: ¢! —e— g2 —e— *CC2 ——
Zipfian distribution: ¢! --@-- cC2 —o- *CC2 2
Workload A Workload B
— 24 :] . : . :
g 22
m 2
< 1.8
Z 16
S 14
S 12
E 1
0.8

2L BRe X
% % BV
#Total client threads

Figure 8: Efficiency (bandwidth overhead) of the ICG
implementation in Correctable Cassandra (CC).

Bandwidth Overhead. In addition to the throughput
drop mentioned above, client-replica bandwidth is the
next relevant metric which ICG can impact. Yet, op-
timizations can cut the cost of this feature (§5.2). We
implement such an optimization in CC, whereby a final
view contains only a small confirmation—instead of the
full response—if it coincides with the preliminary view.
We note that in all experiments thus far we did not rely
on this optimization, which makes our comparisons with
Cassandra conservative.

To obtain a worst-case characterization of the costs of
ICG, we consider the scenario where divergence can be
maximal, as this will lessen the amount of bandwidth we
can save with our optimization. Hence, we consider the
exact conditions we use in the divergence benchmark,
where we discovered that divergence can rise up to 25%.
In this experiment, we measure the average data trans-
ferred (KB) per operation. We contrast three scenarios.
First, as baseline, we use C!, where clients request a sin-
gle consistency version using weak reads. The other two
systems are CC? (without optimization) and *CC? (opti-
mized to reduce bandwidth overhead).

Figure 8 shows our results. As expected, if divergence
is very high—notably in workload A—then many pre-
liminary results are incorrect. This means that final views
cannot be replaced by confirmations, increasing the data
cost by up to 27%. Without any optimization, this would
drive the cost up by 77%. Workload B has a smaller write
ratio (5%), so a lower divergence and more optimization
potential: we can reduce the overhead from 90% down

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation 179

200 | CZK preliminary ——
CZK final
1500 ZK o i
99th %ile latency ¢

Average Latency
(ms)

1001 i
501 i
Client Follower | 'Leader | Follower | Leader
connection: (FRK) (IRL) (IRL) (VRG)
Leader in IRL Leader in VRG

Figure 9: Latency gaps between preliminary and final views
on the result of dequeue operations in Correctable ZooKeeper
(CZK) compared to ZooKeeper (ZK). Client is in IRL.

to 15% (since most final views are confirmations).

Our experiments prove that ICG have a modest cost in
terms of data usage. This cost can be further reduced
through additional techniques (§5.2). We remark that
our choice of baseline, C', is conservative, because CC?
offers better guarantees than C'. A different baseline
would be a system where clients send two requests—one
for R =1 and one for R = 2—and receive two replies.
While such a baseline offers the same properties as CC?,
it would involve bigger data consumption, putting our
system at an advantage.

6.2.2 Potential for Exploiting ICG in ZooKeeper

Latency Gaps. We also measure performance gaps in
ZooKeeper queues for various locations of the leader and
the replica which the client (in IRL) connects to. We
show the results for four representative configurations for
adding elements to a queue (we discuss dequeuing in the
context of a ticket selling system in §6.3.2). The ele-
ments are small, containing an identifier of up to 20B
(e.g., ticket number). Figure 9 shows the latency gaps
when we use ICG in Correctable ZooKeeper (CZK) com-
pared to baseline ZooKeeper (ZK).

In all cases, the latency of the preliminary view (con-
taining the name of the assigned znode) corresponds to
the RTT between the client and the contacted replica.
This latency ranges from 2ms (when client and replica
are both in IRL), through 20ms (the RTT from IRL to
FRK), up to 83ms (the RTT between IRL and VRG). The
most appealing part of this result is perhaps the substan-
tial gap which appears when the client and the closest
follower are in IRL and the leader is distant (in VRG), in
the third group of results in Figure 9.

Bandwidth Overhead. Storing big chunks of data is
not ZooKeeper’s main goal. The client-server bandwidth
is usually not dominated by the payload, reducing the
benefits of the confirmation optimization. For enqueu-
ing, the bandwidth cost thus increases by roughly 50%,
from 270 to 400 bytes/operation. As expected, this corre-
sponds to one additional (preliminary) response message
in addition to the original request and (final) response.
While queues are a common ZooKeeper use-case, a

ZooKeeper -O-- Correctable ZooKeeper ——|

—_—a

ONPOOOONAD
Q
@

4% 81%

Efficiency (KB/op)

12 4 6 8 10 12 12 4 6 8 10 12
Clients

Figure 10: Efficiency (bandwidth overhead) for dequeuing
operation in Correctable ZooKeeper (CZK) and ZooKeeper
(ZK). Overhead in CZK is independent of queue size.

problem appears in standard dequeue implementations
due to message size inflation [3]. Specifically, clients
first read the whole queue and then try to remove the tail
element. To evade this problem in CZK, clients only read
the constant-sized tail relevant for dequeuing. Figure 10
compares the bandwidth cost per dequeue operation in
CZK and ZK for different queue sizes as we increase the
number of contending threads. While the cost still in-
creases with contention in both cases, in CZK we make
it independent of queue size, which is not the case for
ZK. As future work, we plan to make the dequeue cost
also independent of contention using tombstones [63].

6.3 Case Studies for Exploiting ICG

Given the optimization potential explored so far, we now
investigate how to exploit it in the context of three appli-
cations: the Twissandra microblogging service [10], an
ad serving system, and a ticket selling system. The first
two build on CC and use speculation. The last applica-
tion uses CZK queues.

6.3.1 Speculation Case Studies

For Twissandra, we are interested in get_timeline op-
eration, since this is a central operation and is amenable
to optimization through speculation. This operation pro-
ceeds in two-steps: (1) fetch the timeline (tweet IDs),
and then (2) fetch each tweet by its ID. We re-implement
this function to use invoke on step (1) and leverage the
preliminary timeline view to speculatively execute step
(2) by prefetching the tweets. If the final timeline corre-
sponds to the preliminary, then the prefetch was success-
ful and we can reduce the total latency of the operation.
In case the final timeline view is different, we fetch the

tweets again based on their IDs from this final view.
Our second speculation case study is the ad serving

system we describe in §4.2. The goal is to reduce the
total latency of fetchAdsByUserId operation without
sacrificing consistency, so we exploit ICG by speculating
on preliminary values (Listing 4).

For both systems, we adapt their respective operations
to use invoke (R = {1,2}) and plug them in the YCSB
framework. We compare these operations using a base-
line that uses only the strongly consistent result (R = 2),

180 12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

l C?(R=2) —6—

CC?(R=1,2) —— |

Workload A Workload B Workload C
£ 250 250 250
£ 2200 200 200
5%150 150 150
o 5100 100 100
<5 50 50 50
0 0 0
0 50 100 150 200 250 300 O 50 100 150 200 250 300 O 50 100 150 200 250 300
Throughput (ops/sec)
600 600 A 600
oy
5 £450 450 450
S
& 5300 300 300
Nn o
'S §150 150 150
o 0 0
0 50 100 150 200 250 300 O 50 100 150 200 250 300 O 50 100 150 200 250 300

Throughput (ops/sec)

Figure 11: Using speculation via ICG to improve latency in the advertising system and in Twissandra (get_timeline operation).
Correctable Cassandra (CC) improves latency by up to 40% in exchange for a throughput drop of 6%.

and does not leverage speculation. For Twissandra we
use a corpus of 65k tweets [4] spread over 22k user time-
lines; the ad serving system uses a dataset of 100k user-
profiles and 230k ads, where each profile references be-
tween 1 and 40 random ads.

The results are in Figure 11. In contrast to our other
experiments, we deploy Twissandra replicas in Virginia,
N. California, and Oregon EC2 regions. The goal is to
see how performance gains vary based on deployment
scenario. The ads system uses the same configuration as
before. The client is in IRL for both experiments.

We first explain the results for the ads system. As
can be seen, these are consistent with our earlier find-
ings from Cassandra experiments (Figure 6). We trade
throughput for better latency. Prior to saturation, we can
serve ads with an average latency of 60ms. In the same
conditions, the baseline achieves 100ms average latency
(improvement by 40%). In turn, the throughput drop is
most noticeable in workload A, by 180ops/sec (reduced
by 6%). The smaller throughput drop compared to the
raw results of Figure 6 is explained by the fact that each
fetchAdsByUserId entails two storage accesses. Only
the first access, however, uses ICG (to speculate). The
second storage access is hidden inside getAds (Listing 4,
L3); this is a read with R = 2, incurring no extra cost.

For Twissandra, we observe a lower throughput and
higher latency, as the client is farther from the coordina-
tor and replicas are also more distant from each other.
But otherwise we draw similar conclusions. Notably,
across both of these case-studies, divergence was con-
sistently under 1%, so the applications encountered very
few misspeculations.

6.3.2 Selling Tickets to Events

A second notable use-case of ICG is exploiting applica-
tion semantics, as we discuss in the ticket selling system
from §4.3 (see Listing 5). Here we exploit the fact that

. | Correctable ZooKeeper » ZooKeeper © |
g T T T T
£ 300 | Last20
>__ tickets
350

2 0 200 [A .
o2 :
TE o s,
s} 100 b N A'" o
& i *1
© 0k £
-

400 420 440 460 480 500
Ticket number
Figure 12: Selling tickets with ZK and CZK. The last 20
tickets incur high latency due to strong consistency.

the position of a ticket in the queue is irrelevant. Thus, in
the common case, we can rely on the preliminary value.
Strong consistency (atomicity), however, becomes criti-
cal when ticket retailers are contending over the last few
remaining tickets. Using ICG, we can switch dynami-
cally between using the preliminary or the final results
when the stock becomes low, to avoid overselling.

We consider 4 retailers concurrently serving (dequeu-
ing) tickets from a fixed-size stock of 500 tickets. Retail-
ers are colocated with a CZK follower in FRK, the leader
being in IRL. We wait for the final (atomic, equivalent to
ZK) response for the last 20 tickets, otherwise we use
the preliminary one. This is a conservative bound; in our
experiments, only the last two tickets were “revoked” by
the final view on average, with a maximum of six.

Figure 12 shows individual ticket purchase latencies,
averaged over five runs, compared to latencies with
vanilla CZK. As long as there are more than 20 tickets
left, we reduce the purchase latency substantially. The
high variability of final view latencies is caused by con-
tention between the retailers, which does not affect pre-
liminary views. We experiment also with larger ticket
stocks (1000), but the queue length has no practical ef-

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation 181

fect on latencies. To support more contention (more re-
tailers) in practice, such a ticketing service can scale-out.
For instance, we can shard the ticket stock and instantiate
multiple replicated CZK services, each of them serving
a partition of the overall stock, ensuring scalability [22].

7. Conclusions

We have presented Correctables, an abstraction for pro-
gramming with replicated objects. The contribution of
Correctables is twofold. First, they decouple an applica-
tion from its underlying storage stack by drawing a clear
boundary between consistency guarantees and the vari-
ous methods of achieving them. This reduces developer
effort and allows for simpler and more portable code.

Second, Correctables provide incremental consistency
guarantees (ICG), which allow to compose multiple con-
sistency levels within a single operation. With this type
of guarantees we aim to fill a gap in the consistency/per-
formance trade-off. Namely, applications can make last-
minute decisions about what consistency level to use
in an operation while this operation is executing. This
opens the door to new optimizations based on specula-
tion or on concrete, application-specific semantics.

We evaluated the performance and overhead of ICG,
as well as the impact of this novel type of guarantees on
three practical systems: (1) a microblogging service and
(2) an ad serving system, both backed by Cassandra, and
(3) a ticket selling system based on ZooKeeper queues.
We modified both Cassandra and ZooKeeper to support
ICG with little overhead. We showed how ICG provided
by Correctables bring substantial latency decrease for the
price of small bandwidth overhead and throughput drop.

We believe that Correctables provide a new way to
structure the interaction between applications and their
storage by exploiting incrementality, and hence a new
way to build distributed applications.

Acknowledgements

We thank our shepherd, Timothy Roscoe, and the anony-
mous OSDI reviewers for their thoughtful comments
which greatly improved the quality of our paper. We
are also grateful to our colleagues from the Distributed
Programming Laboratory (LPD) for putting up with our
recurring requests for feedback, and for the insightful
discussions we had along the way with Martin Odersky
(who also suggested us the name Correctables), Edouard
Bugnion, Willy Zwaenepoel, John Wilkes, Aleksan-
dar Dragojevié, Julia Proskurnia, Vlad Ureche, and Jad
Hamza. A special thanks goes to Kenji Relut for his help
with ZooKeeper. This work has been supported in part by
the European ERC Grant 339539 - AOC and the Swiss
EFNS grant 20021_147067.

References

[1] Amazon SimpleDB.
https://aws.amazon.com/simpledb/.

[2] C++ Futures at Instagram.
http://instagram-engineering.tumblr.com/
post/121930298932/c-futures-at-instagram.

[3] Distributed queue. netflix/curator. https://github.
com/Netflix/curator/wiki/Distributed-Queue.

[4] Followthehashtag / 170,000 Apple tweets.
http://followthehashtag.com/datasets/
170000-apple-tweets-free-twitter-dataset/.

[5] Google appengine.
https://appengine.google.com/.

[6] google/guava wiki: ListenableFutureExplained.
https://github.com/google/guava/wiki/
ListenableFutureExplained.

[7] ProgressivePromise (Netty 4.0 API).
http://netty.io/4.0/api/io/netty/util/
concurrent/ProgressivePromise.html.

[8] Riak KV, distributed NoSQL database.
http://basho.com/products/riak-kv/.

[9] Skyscanner. http://www.skyscanner.ch.

[10] Twissandra.
https://github.com/twissandra/twissandra/.

[11] ZooKeeper Recipes and Solutions.
http://tiny.cc/zkqueues.

[12] Futures for C++11 at Facebook, 2015. https:
//code.facebook.com/posts/1661982097368498.

[13] reddit/r2/r2/1lib/comment_tree.py:308,
Accessed March, 2016. Source:
https://github.com/reddit/reddit.

[14] D.J. Abadi. Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story.
Computer, (2), 2012.

[15] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for building
scalable distributed systems. In SOSP, 2007.

[16] P. Ajoux, N. Bronson, S. Kumar, W. Lloyd, and
K. Veeraraghavan. Challenges to adopting stronger
consistency at scale. In HorOS XV, 2015.

[17] P.Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Highly available transactions:
Virtues and limitations. VLDB, 7(3), 2013.

[18] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and 1. Stoica. Feral Concurrency Control:
An Empirical Investigation of Modern Application
Integrity. In SIGMOD, 2015.

182 12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

https://aws.amazon.com/simpledb/
http://instagram-engineering.tumblr.com/post/121930298932/c-futures-at-instagram
http://instagram-engineering.tumblr.com/post/121930298932/c-futures-at-instagram
https://github.com/Netflix/curator/wiki/Distributed-Queue
https://github.com/Netflix/curator/wiki/Distributed-Queue
http://followthehashtag.com/datasets/170000-apple-tweets-free-twitter-dataset/
http://followthehashtag.com/datasets/170000-apple-tweets-free-twitter-dataset/
https://appengine.google.com/
https://github.com/google/guava/wiki/ListenableFutureExplained
https://github.com/google/guava/wiki/ListenableFutureExplained
http://netty.io/4.0/api/io/netty/util/concurrent/ProgressivePromise.html
http://netty.io/4.0/api/io/netty/util/concurrent/ProgressivePromise.html
http://basho.com/products/riak-kv/
http://www.skyscanner.ch
https://github.com/twissandra/twissandra/
http://tiny.cc/zkqueues
https://code.facebook.com/posts/1661982097368498
https://code.facebook.com/posts/1661982097368498
reddit/r2/r2/lib/comment_tree.py:308
https://github.com/reddit/reddit

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

P. Bailis, S. Venkataraman, M. J. Franklin, J. M.
Hellerstein, and I. Stoica. Probabilistically bounded
staleness for practical partial quorums. VLDB, 5(8),
2012.

J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and
V. Yushprakh. Megastore: Providing scalable, highly

available storage for interactive services. In CIDR, 2011.

E. Brewer. Cap twelve years later: How the “rules” have
changed. Computer, 45(2), 2012.

M. Burrows. The Chubby lock service for
loosely-coupled distributed systems. In OSDI, 2006.

T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: An engineering perspective. In PODC, 2007.

B. F. Cooper, R. Ramakrishnan, U. Srivastava,

A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,

D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data
serving platform. VLDB, 1(2), 2008.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
YCSB. In SoCC, 2010.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,

J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,

P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,

R. Wang, and D. Woodford. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems (TOCS), 31(3), 2013.

J. Dean and L. A. Barroso. The tail at scale. CACM,
56(2), 2013.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo. In SOSP, 2007.

A. Dragojevi¢, D. Narayanan, E. B. Nightingale,

M. Renzelmann, A. Shamis, A. Badam, and M. Castro.
No Compromises: Distributed Transactions with
Consistency, Availability, and Performance. In SOSP,
2015.

J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel.
Gentlerain: Cheap and scalable causal consistency with
physical clocks. In SoCC, 2014.

M. Eriksen. Your server as a function. In PLOS, 2013.

D. K. Gifford. Weighted voting for replicated data. In
SOSP, 1979.

S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. ACM SIGACT News, 33(2), 2002.

[34]

(35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

C. Hale and R. Kennedy. Using Riak at Yammer, March
2011. http://dl.dropbox.com/u/2744222/
2011-03-22_Riak-At-Yammer.pdf.

J. Hamilton. The cost of latency.
http://perspectives.mvdirona.com/2009/10/
the-cost-of-latency/, 2009.

P. Helland and D. Campbell. Building on quicksand. In
CIDR, 2009.

M. Herlihy. Wait-free synchronization. ACM Trans.
Program. Lang. Syst., 1991.

M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3), 1990.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In USENIX ATC, 2010.

F. P. Junqueira, B. C. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup
systems. In DSN, 2011.

M. Kapritsos, Y. Wang, V. Quema, A. Clement,
L. Alvisi, and M. Dahlin. All about Eve: Execute-Verify
Replication for Multi-Core Servers. In OSDI, 2012.

Y. Koren. Collaborative filtering with temporal
dynamics. CACM, 53(4), 2010.

T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann.
Consistency Rationing in the Cloud: Pay only when it
matters. VLDB, 2(1), 2009.

T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. MDCC: Multi-data Center Consistency. In
EuroSys, 2013.

A. Lakshman and P. Malik. Cassandra - A Decentralized
Structured Storage System. SIGOPS Oper. Syst. Rev.,
44(2), 2010.

L. Lamport. The part-time parliament. ACM TOCS,
16(2), 1998.

J.R. Lange, P. A. Dinda, and S. Rossoff. Experiences
with Client-based Speculative Remote Display. In
USENIX ATC, 2008.

C. Lee, S. J. Park, A. Kejriwal, S. Matsushita, and
J. Ousterhout. Implementing Linearizability at Large
Scale and Low Latency. In SOSP, 2015.

K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev,

S. Grizan, A. Wolman, and J. Flinn. Outatime: Using
speculation to enable low-latency continuous interaction
for mobile cloud gaming. In MobiSys, 2015.

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation

183

http://dl. dropbox.com/u/2744222/2011-03-22_Riak-At-Yammer.pdf
http://dl. dropbox.com/u/2744222/2011-03-22_Riak-At-Yammer.pdf
http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/

[50]

[51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

C. Li, J. Leitao, A. Clement, N. Preguica, R. Rodrigues,
and V. Vafeiadis. Automating the choice of consistency
levels in replicated systems. In USENIX ATC, 2014.

C.Li, D. Porto, A. Clement, J. Gehrke, N. Pregui¢a, and
R. Rodrigues. Making geo-replicated systems fast as
possible, consistent when necessary. In OSDI, 2012.

D. Li, J. Mickens, S. Nath, and L. Ravindranath.
Domino: Understanding Wide-Area, Asynchronous
Event Causality in Web Applications. In SoCC, 2015.

B. Liskov and L. Shrira. Promises: Linguistic support
for efficient asynchronous procedure calls in distributed
systems. In PLDI, 1988.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency
geo-replicated storage. In NSDI, 2013.

H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song,
W. Tobagus, S. Kumar, and W. Lloyd. Existential
Consistency: Measuring and Understanding Consistency
at Facebook. In SOSP, 2015.

E. Meijer. Your mouse is a database. CACM, 55(5),
2012.

J. Mickens, J. Elson, J. Howell, and J. Lorch. Crom:
Faster Web Browsing Using Speculative Execution. In
NSDI, 2010.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system.

E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative
Execution in a Distributed File System. In SOSP, 2005.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,

H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,

P. Saab, et al. Scaling Memcache at Facebook. In NSDI,
2013.

G. Pang, T. Kraska, M. J. Franklin, and A. Fekete.
PLANET: Making Progress with Commit Processing in
Unpredictable Environments. In SIGMOD, 2014.

D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V.
Madhyastha, and C. Ungureanu. Simba: Tunable
End-to-end Data Consistency for Mobile Apps. In
EuroSys, 2015.

Y. Saito and M. Shapiro. Optimistic replication. ACM
Computing Surveys, 37(1), 2005.

P. Schulle. Manhattan, distributed database for Twitter
scale. http://tiny.cc/twitmanhattan, 2014.

M. Schwarzkopf. Operating system support for
warehouse-scale computing. PhD thesis, University of
Cambridge Computer Laboratory, 2015.

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan,
M. K. Aguilera, and H. Abu-Libdeh. Consistency-based
service level agreements for cloud storage. In SOSP,
2013.

D. B. Terry, M. M. Theimer, K. Petersen, a. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated
storage system. SIGOPS Oper. Syst. Rev., 29(5), 1995.

R. Van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. In OSDI,
2004.

H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data
Consistency Properties and the Trade-offs in
Commercial Cloud Storage: the Consumers’ Perspective.
In CIDR, 2011.

B. Wester, P. M. Chen, and J. Flinn. Operating System
Support for Application-Specific Speculation. In
EuroSys, 2011.

B. Wester, J. A. Cowling, E. B. Nightingale, P. M. Chen,
J. Flinn, and B. Liskov. Tolerating latency in replicated
state machines through client speculation. In NSDI,
2009.

C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh,
L. Alvisi, and P. Mahajan. Salt: Combining ACID and
BASE in a distributed database. In OSDI, 2014.

H. Yu and A. Vahdat. Design and evaluation of a
continuous consistency model for replicated services. In
0SDI, 2000.

1. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. K. Ports. Building Consistent Transactions
with Inconsistent Replication. In SOSP, 2015.

184

12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

http://tiny.cc/twitmanhattan

	Introduction
	Overview & Related Work
	Consistency Choices
	ICG: Incremental Consistency Guarantees
	Client-side Handling of ICG

	Correctables
	From Promises to Correctables
	Decoupling Semantics from Implementation

	Correctables in Action
	Decoupling Applications from Storage
	Speculating with Correctables
	Exploiting Application Semantics
	Exposing Data Incrementally
	Discussion: Applicability of ICG

	Bindings
	Binding API
	Efficiency and Server-side Support

	Evaluation
	Methodology
	Potential for Exploiting ICG
	Potential for Exploiting ICG in Cassandra
	Potential for Exploiting ICG in ZooKeeper

	Case Studies for Exploiting ICG
	Speculation Case Studies
	Selling Tickets to Events

	Conclusions

