
Design Patterns: Abstraction and Reuse of

Object-Oriented Design

Erich Gamma1?, Richard Helm2, Ralph Johnson3, John Vlissides2

1 Taligent, Inc.

10725 N. De Anza Blvd., Cupertino, CA 95014-2000 USA

2 I.B.M. Thomas J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598 USA

3 Department of Computer Science

University of Illinois at Urbana-Champaign

1034 W. Spring�eld Ave., Urbana, IL 61801 USA

Abstract. We propose design patterns as a new mechanism for expressing object-oriented
design experience. Design patterns identify, name, and abstract common themes in object-

oriented design. They capture the intent behind a design by identifying objects, their col-

laborations, and the distribution of responsibilities. Design patterns play many roles in the
object-oriented development process: they provide a common vocabulary for design, they re-

duce system complexity by naming and de�ning abstractions, they constitute a base of ex-

perience for building reusable software, and they act as building blocks from which more
complex designs can be built. Design patterns can be considered reusable micro-architectures

that contribute to an overall system architecture. We describe how to express and organize

design patterns and introduce a catalog of design patterns. We also describe our experience in
applying design patterns to the design of object-oriented systems.

1 Introduction

Design methods are supposed to promote good design, to teach new designers how to design well, and
to standardize the way designs are developed. Typically, a design method comprises a set of syntactic
notations (usually graphical) and a set of rules that govern how and when to use each notation. It
will also describe problems that occur in a design, how to �x them, and how to evaluate a design.
Studies of expert programmers for conventional languages, however, have shown that knowledge is
not organized simply around syntax, but in larger conceptual structures such as algorithms, data
structures and idioms [1, 7, 9, 27], and plans that indicate steps necessary to ful�ll a particular
goal [26]. It is likely that designers do not think about the notation they are using for recording
the design. Rather, they look for patterns to match against plans, algorithms, data structures, and
idioms they have learned in the past. Good designers, it appears, rely on large amounts of design
experience, and this experience is just as important as the notations for recording designs and the
rules for using those notations.

Our experience with the design of object-oriented systems and frameworks [15, 17, 22, 30, 31]
bears out this observation. We have found that there exist idiomatic class and object structures that
help make designs more
exible, reusable, and elegant. For example, the Model-View-Controller
(MVC) paradigm from Smalltalk [19] is a design structure that separates representation from pre-
sentation. MVC promotes
exibility in the choice of views, independent of the model. Abstract
factories [10] hide concrete subclasses from the applications that use them so that class names are
not hard-wired into an application.

? Work performed while at UBILAB, Union Bank of Switzerland, Zurich, Switzerland.
To appear in ECOOP '93 Conference Proceedings, Springer-Verlag Lecture Notes in Computer Science.

Well-de�ned design structures like these have a positive impact on software development. A
software architect who is familiar with a good set of design structures can apply them immediately
to design problems without having to rediscover them. Design structures also facilitate the reuse of
successful architectures|expressing proven techniques as design structures makes them more readily
accessible to developers of new systems. Design structures can even improve the documentation and
maintenance of existing systems by furnishing an explicit speci�cation of class and object interactions
and their underlying intent.

To this end we propose design patterns, a new mechanism for expressing design structures.
Design patterns identify, name, and abstract common themes in object-oriented design. They pre-
serve design information by capturing the intent behind a design. They identify classes, instances,
their roles, collaborations, and the distribution of responsibilities. Design patterns have many uses
in the object-oriented development process:

{ Design patterns provide a common vocabulary for designers to communicate, document, and
explore design alternatives. They reduce system complexity by naming and de�ning abstractions
that are above classes and instances. A good set of design patterns e�ectively raises the level at
which one programs.

{ Design patterns constitute a reusable base of experience for building reusable software. They
distill and provide a means to reuse the design knowledge gained by experienced practitioners.
Design patterns act as building blocks for constructing more complex designs; they can be
considered micro-architectures that contribute to overall system architecture.

{ Design patterns help reduce the learning time for a class library. Once a library consumer has
learned the design patterns in one library, he can reuse this experience when learning a new class
library. Design patterns help a novice perform more like an expert.

{ Design patterns provide a target for the reorganization or refactoring of class hierarchies [23].
Moreover, by using design patterns early in the lifecycle, one can avert refactoring at later stages
of design.

The major contributions of this paper are: a de�nition of design patterns, a means to describe
them, a system for their classi�cation, and most importantly, a catalog containing patterns we have
discovered while building our own class libraries and patterns we have collected from the literature.
This work has its roots in Gamma's thesis [11], which abstracted design patterns from the ET++
framework. Since then the work has been re�ned and extended based on our collective experience.
Our thinking has also been in
uenced and inspired by discussions within the Architecture Handbook

Workshops at recent OOPSLA conferences [3, 4].
This paper has two parts. The �rst introduces design patterns and explains techniques to describe

them. Next we present a classi�cation system that characterizes common aspects of patterns. This
classi�cation will serve to structure the catalog of patterns presented in the second part of this paper.
We discuss how design patterns impact object-oriented programming and design. We also review
related work.

The second part of this paper (the Appendix) describes our current catalog of design patterns.
As we cannot include the complete catalog in this paper (it currently runs over 90 pages [12]), we
give instead a brief summary and include a few abridged patterns. Each pattern in this catalog is
representative of what we judge to be good object-oriented design. We have tried to reduce the
subjectivity of this judgment by including only design patterns that have seen practical application.
Every design pattern we have included works|most have been used at least twice and have either
been discovered independently or have been used in a variety of application domains.

2 Design Patterns

A design pattern consists of three essential parts:

1. An abstract description of a class or object collaboration and its structure. The description is
abstract because it concerns abstract design, not a particular design.

2. The issue in system design addressed by the abstract structure. This determines the circum-
stances in which the design pattern is applicable.

3. The consequences of applying the abstract structure to a system's architecture. These determine
if the pattern should be applied in view of other design constraints.

Design patterns are de�ned in terms of object-oriented concepts. They are su�ciently abstract to
avoid specifying implementation details, thereby ensuring wide applicability, but a pattern may
provide hints about potential implementation issues.

We can think of a design pattern as a micro-architecture. It is an architecture in that it serves
as a blueprint that may have several realizations. It is \micro" in that it de�nes something less than
a complete application or library. To be useful, a design pattern should be applicable to more than
a few problem domains; thus design patterns tend to be relatively small in size and scope. A design
pattern can also be considered a transformation of system structure. It de�nes the context for the
transformation, the change to be made, and the consequences of this transformation.

To help readers understand patterns, each entry in the catalog also includes detailed descriptions
and examples. We use a template (Figure 1) to structure our descriptions and to ensure uniformity
between entries in the catalog. This template also explains the motivation behind its structure.
The Appendix contains three design patterns that use the template. We urge readers to study the
patterns in the Appendix as they are referenced in the following text.

3 Categorizing Design Patterns

Design patterns vary in their granularity and level of abstraction. They are numerous and have
common properties. Because there are many design patterns, we need a way to organize them. This
section introduces a classi�cation system for design patterns. This classi�cation makes it easy to
refer to families of related patterns, to learn the patterns in the catalog, and to �nd new patterns.

Characterization

Creational Structural Behavioral

Jurisdiction Class Factory Method Adapter (class) Template Method

Bridge (class)

Object Abstract Factory Adapter (object) Chain of Responsibility

Prototype Bridge (object) Command

Solitaire Flyweight Iterator (object)

Glue Mediator

Proxy Memento

Observer

State

Strategy

Compound Builder Composite Interpreter

Wrapper Iterator (compound)

Walker

Table 1. Design Pattern Space

Design Pattern Name Jurisdiction Characterization

What is the pattern's name and classi�cation? The name should convey the pattern's essence succinctly. A
good name is vital, as it will become part of the design vocabulary.

Intent
What does the design pattern do? What is its rationale and intent? What particular design issue

or problem does it address?

Motivation
A scenario in which the pattern is applicable, the particular design problem or issue the pattern ad-
dresses, and the class and object structures that address this issue. This information will help the reader

understand the more abstract description of the pattern that follows.

Applicability
What are the situations in which the design pattern can be applied? What are examples of poor

designs that the pattern can address? How can one recognize these situations?

Participants
Describe the classes and/or objects participating in the design pattern and their responsibilities us-
ing CRC conventions [5].

Collaborations
Describe how the participants collaborate to carry out their responsibilities.

Diagram
A graphical representation of the pattern using a notation based on the Object Modeling Technique

(OMT) [25], to which we have added method pseudo-code.

Consequences
How does the pattern support its objectives? What are the trade-o�s and results of using the pat-

tern? What does the design pattern objectify? What aspect of system structure does it allow to be

varied independently?

Implementation
What pitfalls, hints, or techniques should one be aware of when implementing the pattern? Are there

language-speci�c issues?

Examples
This section presents examples from real systems. We try to include at least two examples from di�erent
domains.

See Also
What design patterns have closely related intent? What are the important di�erences? With which
other patterns should this one be used?

Fig. 1. Basic Design Pattern Template

We can think of the set of all design patterns in terms of two orthogonal criteria, jurisdiction
and characterization. Table 1 organizes our current set of patterns according to these criteria.

Jurisdiction is the domain over which a pattern applies. Patterns having class jurisdiction deal
with relationships between base classes and their subclasses; class jurisdiction covers static semantics.
The object jurisdiction concerns relationships between peer objects. Patterns having compound

jurisdiction deal with recursive object structures. Some patterns capture concepts that span juris-
dictions. For example, iteration applies both to collections of objects (i.e., object jurisdiction) and

to recursive object structures (compound jurisdiction). Thus there are both object and compound
versions of the Iterator pattern.

Characterization re
ects what a pattern does. Patterns can be characterized as either creational,
structural, or behavioral. Creational patterns concern the process of object creation. Structural
patterns deal with the composition of classes or objects. Behavioral patterns characterize the ways
in which classes or objects interact and distribute responsibility.

The following sections describe pattern jurisdictions in greater detail for each characterization
using examples from our catalog.

3.1 Class Jurisdiction

Class Creational. Creational patterns abstract how objects are instantiated by hiding the speci�cs
of the creation process. They are useful because it is often undesirable to specify a class name
explicitly when instantiating an object. Doing so limits
exibility; it forces the programmer to
commit to a particular class instead of a particular protocol. If one avoids hard-coding the class,
then it becomes possible to defer class selection to run-time.

Creational class patterns in particular defer some part of object creation to subclasses. An exam-
ple is the Factory Method, an abstract method that is called by a base class but de�ned in subclasses.
The subclass methods create instances whose type depends on the subclass in which each method
is implemented. In this way the base class does not hard-code the class name of the created object.
Factory Methods are commonly used to instantiate members in base classes with objects created by
subclasses.

For example, an abstract Application class needs to create application-speci�c documents that
conform to the Document type. Application instantiates these Document objects by calling the
factory method DoMakeDocument. This method is overridden in classes derived from Application.
The subclass DrawApplication, say, overrides DoMakeDocument to return a DrawDocument object.

Class Structural. Structural class patterns use inheritance to compose protocols or code. As a
simple example, consider using multiple inheritance to mix two or more classes into one. The result
is an amalgam class that unites the semantics of the base classes. This trivial pattern is quite useful
in making independently-developed class libraries work together [15].

Another example is the class-jurisdictional form of the Adapter pattern. In general, an Adapter
makes one interface (the adaptee's) conform to another, thereby providing a uniform abstraction of
di�erent interfaces. A class Adapter accomplishes this by inheriting privately from an adaptee class.
The Adapter then expresses its interface in terms of the adaptee's.

Class Behavioral. Behavioral class patterns capture how classes cooperate with their subclasses
to ful�ll their semantics. Template Method is a simple and well-known behavioral class pattern [32].
Template methods de�ne algorithms step by step. Each step can invoke an abstract method (which
the subclass must de�ne) or a base method. The purpose of a template method is to provide an
abstract de�nition of an algorithm. The subclass must implement speci�c behavior to provide the
services required by the algorithm.

3.2 Object Jurisdiction

Object patterns all apply various forms of non-recursive object composition. Object composition
represents the most powerful form of reusability|a collection of objects are most easily reused
through variations on how they are composed rather than how they are subclassed.

Object Creational. Creational object patterns abstract how sets of objects are created. The Ab-
stract Factory pattern (page 14) is a creational object pattern. It describes how to create \product"
objects through an generic interface. Subclasses may manufacture specialized versions or composi-
tions of objects as permitted by this interface. In turn, clients can use abstract factories to avoid
making assumptions about what classes to instantiate. Factories can be composed to create larger
factories whose structure can be modi�ed at run-time to change the semantics of object creation.
The factory may manufacture a custom composition of instances, a shared or one-of-a-kind instance,
or anything else that can be computed at run-time, so long as it conforms to the abstract creation
protocol.

For example, consider a user interface toolkit that provides two types of scroll bars, one for Motif
and another for Open Look. An application programmermay not want to hard-code one or the other
into the application|the choice of scroll bar will be determined by, say, an environment variable.
The code that creates the scroll bar can be encapsulated in the class Kit, an abstract factory that
abstracts the speci�c type of scroll bar to instantiate. Kit de�nes a protocol for creating scroll bars
and other user interface elements. Subclasses of Kit rede�ne operations in the protocol to return
specialized types of scroll bars. A MotifKit's scroll bar operation would instantiate and return a
Motif scroll bar, while the corresponding OpenLookKit operation would return an Open Look scroll
bar.

Object Structural. Structural object patterns describe ways to assemble objects to realize new
functionality. The added
exibility inherent in object composition stems from the ability to change
the composition at run-time, which is impossible with static class composition.

Proxy is an example of a structural object pattern. A proxy acts as a convenient surrogate or
placeholder for another object. A proxy can be used as a local representative for an object in a
di�erent address space (remote proxy), to represent a large object that should be loaded on demand
(virtual proxy), or to protect access to the original object (protected proxy). Proxies provide a level
of indirection to particular properties of objects. Thus they can restrict, enhance, or alter an object's
properties.

The Flyweight pattern is concerned with object sharing. Objects are shared for at least two
reasons: e�ciency and consistency. Applications that use large quantities of objects must pay careful
attention to the cost of each object. Substantial savings can accrue by sharing objects instead of
replicating them. However, objects can only be shared if they do not de�ne context-dependent state.
Flyweights have no context-dependent state. Any additional information they need to perform their
task is passed to them when needed. With no context-dependent state,
yweights may be shared
freely. Moreover, it may be necessary to ensure that all copies of an object stay consistent when one
of the copies changes. Sharing provides an automatic way to maintain this consistency.

Object Behavioral. Behavioral object patterns describe how a group of peer objects cooperate to
perform a task that no single object can carry out by itself. For example, patterns such as Mediator
and Chain of Responsibility abstract control
ow. They call for objects that exist solely to redirect
the
ow of messages. The redirection may simply notify another object, or it may involve complex
computation and bu�ering. The Observer pattern abstracts the synchronization of state or behavior.
Entities that are co-dependent to the extent that their state must remain synchronized may exploit
Observer. The classic example is the model-view pattern, in which multiple views of the model are
noti�ed whenever the model's state changes.

The Strategy pattern (page 17) objecti�es an algorithm. For example, a text composition object
may need to support di�erent line breaking algorithms. It is infeasible to hard-wire all such algorithms
into the text composition class and subclasses. An alternative is to objectify di�erent algorithms and

However, object models that support dynamic inheritance, most notably Self [29], are as
exible as object

composition in theory.

provide them as Compositor subclasses. The interface for Compositors is de�ned by the abstract
Compositor class, and its derived classes provide di�erent layout strategies, such as simple line
breaks or full page justi�cation. Instances of the Compositor subclasses can be coupled with the text
composition at run-time to provide the appropriate text layout. Whenever a text composition has
to �nd line breaks, it forwards this responsibility to its current Compositor object.

3.3 Compound Jurisdiction

In contrast to patterns having object jurisdiction, which concern peer objects, patterns with com-
pound jurisdiction a�ect recursive object structures.

Compound Creational. Creational compound patterns are concerned with the creation of recur-
sive object structures. An example is the Builder pattern. A Builder base class de�nes a generic
interface for incrementally constructing recursive object structures. The Builder hides details of how
objects in the structure are created, represented, and composed so that changing or adding a new
representation only requires de�ning a new Builder class. Clients will be una�ected by changes to
Builder.

Consider a parser for the RTF (Rich Text Format) document exchange format that should be
able to perform multiple format conversions. The parser might convert RTF documents into (1)
plain ASCII text and (2) a text object that can be edited in a text viewer object. The problem is
how to make the parser independent of these di�erent conversions.

The solution is to create an RTFReader class that takes a Builder object as an argument. The
RTFReader knows how to parse the RTF format and noti�es the Builder whenever it recognizes text
or an RTF control word. The builder is responsible for creating the corresponding data structure.
It separates the parsing algorithm from the creation of the structure that results from the parsing
process. The parsing algorithm can then be reused to create any number of di�erent data repre-
sentations. For example, an ASCII builder ignores all noti�cations except plain text, while a Text
builder uses the noti�cations to create a more complex text structure.

Compound Structural. Structural compound patterns capture techniques for structuring recur-
sive object structures. A simple example is the Composite pattern. A Composite is a recursive
composition of one or more other Composites. A Composite treats multiple, recursively composed
objects as a single object.

The Wrapper pattern (page 20) describes how to
exibly attach additional properties and services
to an object. Wrappers can be nested recursively and can therefore be used to compose more complex
object structures. For example, a Wrapper containing a single user interface component can add
decorations such as borders, shadows, scroll bars, or services like scrolling and zooming. To do this,
the Wrapper must conform to the interface of its wrapped component and forward messages to it.
The Wrapper can perform additional actions (such as drawing a border around the component)
either before or after forwarding a message.

Compound Behavioral. Finally, behavioral compound patterns deal with behavior in recursive
object structures. Iteration over a recursive structure is a common activity captured by the Iterator
pattern. Rather than encoding and distributing the traversal strategy in each class in the structure,
it can be extracted and implemented in an Iterator class. Iterators objectify traversal algorithms over
recursive structures. Di�erent iterators can implement pre-order, in-order, or post-order traversals.
All that is required is that nodes in the structure provide services to enumerate their sub-structures.
This avoids hard-wiring traversal algorithms throughout the classes of objects in a composite struc-
ture. Iterators may be replaced at run-time to provide alternative traversals.

4 Experience with Design Patterns

We have applied design patterns to the design and construction of a several systems. We brie
y
describe two of these systems and our experience.

4.1 ET++SwapsManager

The ET++SwapsManager [10] is a highly interactive tool that lets traders value, price, and perform
what-if analyses for a �nancial instrument called a swap. During this project the developers had to
�rst learn the ET++ class library, then implement the tool, and �nally design a framework for cre-
ating \calculation engines" for di�erent �nancial instruments. While teaching ET++ we emphasized
not only learning the class library but also describing the applied design patterns. We noticed that
design patterns reduced the e�ort required to learn ET++. Patterns also proved helpful during de-
velopment in design and code reviews. Patterns provided a common vocabulary to discuss a design.
Whenever we encountered problems in the design, patterns helped us explore design alternatives
and �nd solutions.

4.2 QOCA: A Constraint Solving Toolkit

QOCA (Quadratic Optimization Constraint Architecture) [14, 15] is a new object-oriented
constraint-solving toolkit developed at IBM Research. QOCA leverages recent results in symbolic
computation and geometry to support e�cient incremental and interactive constraint manipulation.
QOCA's architecture is designed to be
exible. It permits experimentation with di�erent classes of
constraints and domains (e.g., reals, booleans, etc.), di�erent constraint-solving algorithms for these
domains, and di�erent representations (doubles, in�nite precision) for objects in these domains. QO-
CA's object-oriented design allows parts of the system to be varied independently of others. This

exibility was achieved, for example, by using Strategy patterns to factor out constraint solving
algorithms and Bridges to factor out domains and representations of variables. In addition, the
Observable pattern is used to propagate noti�cations when variables change their values.

4.3 Summary of Observations

The following points summarize the major observations we have made while applying design patterns:

{ Design patterns motivate developers to go beyond concrete objects; that is, they objectify con-
cepts that are not immediately apparent as objects in the problem domain.

{ Choosing intuitive class names is important but also di�cult. We have found that design pat-
terns can help name classes. In the ET++SwapsManager's calculation engine framework we
encoded the name of the design pattern in the class name (for example CalculationStrategy or
TableAdaptor). This convention results in longer class names, but it gives clients of these classes
a hint about their purpose.

{ We often apply design patterns after the �rst implementation of an architecture to improve its
design. For example, it is easier to apply the Strategy pattern after the initial implementation to
create objects for more abstract notions like a calculation engine or constraint solver. Patterns
were also used as targets for class refactorings. We often �nd ourselves saying, \Make this part of
a class into a Strategy," or, \Let's split the implementation portion of this class into a Bridge."

{ Presenting design patterns together with examples of their application turned out to be an
e�ective way to teach object-oriented design by example.

{ An important issue with any reuse technology is how a reusable component can be adapted to
create a problem-speci�c component. Design patterns are particularly suited to reuse because
they are abstract. Though a concrete class structure may not be reusable, the design pattern
underlying it often is.

{ Design patterns also reduce the e�ort required to learn a class library. Each class library has a
certain design \culture" characterized by the set of patterns used implicitly by its developers.
A speci�c design pattern is typically reused in di�erent places in the library. A client should
therefore learn these patterns as a �rst step in learning the library. Once they are familiar with
the patterns, they can reuse this understanding. Moreover, because some patterns appear in
other class libraries, it is possible to reuse the knowledge about patterns when learning other
libraries as well.

5 Related Work

Design patterns are an approach to software reuse. Krueger [20] introduces the following taxonomy
to characterize di�erent reuse approaches: software component reuse, software schemas, application
generators, transformation systems, and software architectures. Design patterns are related to both
software schemas and reusable software architectures. Software schemas emphasize reusing abstract
algorithms and data structures. These abstractions are represented formally so they can be instan-
tiated automatically. The Paris system [18] is representative of schema technology. Design patterns
are higher-level than schemas; they focus on design structures at the level of collaborating classes
and not at the algorithmic level. In addition, design patterns are not formal descriptions and cannot
be instantiated directly. We therefore prefer to view design patterns as reusable software architec-
tures. However, the examples Krueger lists in this category (blackboard architectures for expert
systems, adaptable database subsystems) are all coarse-grained architectures. Design patterns are
�ner-grained and therefore can be characterized as reusable micro-architectures.

Most research into patterns in the software engineering community has been geared towards
building knowledge-based assistants for automating the application of patterns for synthesis (that
is, to write programs) and analysis (in debugging, for example) [13, 24]. The major di�erence between
our work and that of the knowledge-based assistant community is that design patterns encode higher-
level expertise. Their work has tended to focus on patterns like enumeration and selection, which
can be expressed directly as reusable components in most existing object-oriented languages. We
believe that characterizing and cataloging higher-level patterns that designers already use informally
has an immediate bene�t in teaching and communicating designs.

A common approach for reusing object-oriented software architectures are object-oriented frame-
works [32]. A framework is a codi�ed architecture for a problem domain that can be adapted to solve
speci�c problems. A framework makes it possible to reuse an architecture together with a partial
concrete implementation. In contrast to frameworks, design patterns allow only the reuse of ab-
stract micro-architectures without a concrete implementation. However, design patterns can help
de�ne and develop frameworks. Mature frameworks usually reuse several design patterns. An im-
portant distinction between frameworks and design patterns is that frameworks are implemented
in a programming language. Our patterns are ways of using a programming language. In this sense
frameworks are more concrete than design patterns.

Design patterns are also related to the idioms introduced by Coplien [7]. These idioms are concrete
design solutions in the context of C++. Coplien \focuses on idioms that make C++ programs more
expressive." In contrast, design patterns are more abstract and higher-level than idioms. Patterns
try to abstract design rather than programming techniques. Moreover, design patterns are usually
independent of the implementation language.

There has been interest recently within the object-oriented community [8] in pattern languages
for the architecture of buildings and communities as advocated by Christopher Alexander in The

Timeless Way of Building [2]. Alexander's patterns consist of three parts:

{ A context that describes when a pattern is applicable.
{ The problem (or \system of con
icting forces") that the pattern resolves in that context.
{ A con�guration that describes physical relationships that solve the problem.

Both design patterns and Alexander's patterns share the notion of context/problem/con�guration,
but our patterns currently do not form a complete system of patterns and so do not strictly de�ne a
pattern language. This may be because object-oriented design is still a young technology|we may
not have had enough experience in what constitutes good design to extract design patterns that
cover all phases of the design process. Or this may be simply because the problems encountered in
software design are di�erent from those found in architecture and are not amenable to solution by
pattern languages.

Recently, Johnson has advocated pattern languages to describe how to use use object-oriented
frameworks [16]. Johnson uses a pattern language to explain how to extend and customize the
Hotdraw drawing editor framework. However, these patterns are not design patterns; they are more
descriptions of how to reuse existing components and frameworks instead of rules for generating new
designs.

Coad's recent paper on object-oriented patterns [6] is also motivated by Alexander's work but is
more closely related to our work. The paper has seven patterns: \Broadcast" is the same as Observer,
but the other patterns are di�erent from ours. In general, Coad's patterns seem to be more closely
related to analysis than design. Design patterns like Wrapper and Flyweight are unlikely to be
generated naturally during analysis unless the analyst knows these patterns well and thinks in terms
of them. Coad's patterns could naturally arise from a simple attempt to model a problem. In fact,
it is hard to see how any large model could avoid using patterns like \State Across a Collection"
(which explains how to use aggregation) or \Behavior Across a Collection" (which describes how to
distribute responsibility among objects in an aggregate). The patterns in our catalog are typical of a
mature object-oriented design, one that has departed from the original analysis model in an attempt
to make a system of reusable objects. In practice, both types of patterns are probably useful.

6 Conclusion

Design patterns have revolutionized the way we think about, design, and teach object-oriented
systems. We have found them applicable in many stages of the design process|initial design, reuse,
refactoring. They have given us a new level of abstraction for system design.

New levels of abstraction often a�ord opportunities for increased automation. We are investi-
gating how interactive tools can take advantage of design patterns. One of these tools lets a user
explore the space of objects in a running program and watch their interaction. Through observation
the user may discover existing or entirely new patterns; the tool lets the user record and catalog

his observations. The user may thus gain a better understanding of the application, the libraries on
which it is based, and design in general.

Design patterns may have an even more profound impact on how object-oriented systems are
designed than we have discussed. Common to most patterns is that they permit certain aspects of
a system to be varied independently. This leads to thinking about design in terms of \What aspect
of a design should be variable?" Answers to this question lead to certain applicable design patterns,
and their application leads subsequently to modi�cation of a design. We refer to this design activity
as variation-oriented design and discuss it more fully in the catalog of patterns [12].

But some caveats are in order. Design patterns should not be applied indiscriminately. They
typically achieve
exibility and variability by introducing additional levels of indirection and can
therefore complicate a design. A design pattern should only be applied when the
exibility it a�ords
is actually needed. The consequences described in a pattern help determine this. Moreover, one is
often tempted to brand any new programming trick a new design pattern. A true design pattern
will be non-trivial and will have had more than one application.

We hope that the design patterns described in this paper and in the companion catalog will pro-
vide the object-oriented community both a common design terminology and a repertoire of reusable
designs. Moreover, we hope the catalog will motivate others to describe their systems in terms of
design patterns and develop their own design patterns for others to reuse.

7 Acknowledgements

The authors wish to thank Doug Lea and Kent Beck for detailed comments and discussions about
this work, and Bruce Anderson and the participants of the Architecture Handbook workshops at
OOPSLA '91 and '92.

References

1. B. Adelson and Soloway E. The role of domain experience in software design. IEEE Transactions on

Software Engineering, 11(11):1351{1360, 1985.
2. Christopher Alexander. The Timeless Way of Building. Oxford University Press, New York, 1979.

3. Association for Computing Machinery. Addendum to the Proceedings, Object-Oriented Programming

Systems, Languages, and Applications Conference, Phoenix, AZ, October 1991.
4. Association for Computing Machinery. Addendum to the Proceedings, Object-Oriented Programming

Systems, Languages, and Applications Conference, Vancouver, British Columbia, October 1992.

5. Kent Beck and Ward Cunningham. A laboratory for teaching object-oriented thinking. In Object-

Oriented Programming Systems, Languages, and Applications Conference Proceedings, pages 1{6, New

Orleans, LA, October 1989.

6. Peter Coad. Object-oriented patterns. Communications of the ACM, 35(9):152{159, September 1992.
7. James O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley, Reading,

Massechusetts, 1992.

8. Ward Cunningham and Kent Beck. Constructing abstractions for object-oriented applications. Technical
Report CR-87{25, Computer Research Laboratory, Tektronix, Inc., 1987.

9. Bill Curtis. Cognitive issues in reusing software artifacts. In Ted J. Biggersta� and Alan J. Perlis,

editors, Software Reusability, Volume II, pages 269{287. Addison-Wesley, 1989.
10. Thomas Eggenschwiler and Erich Gamma. The ET++SwapsManager: Using object technology in the

�nancial engineering domain. In Object-Oriented Programming Systems, Languages, and Applications

Conference Proceedings, pages 166{178, Vancouver, British Columbia, October 1992.
11. Erich Gamma. Objektorientierte Software-Entwicklung am Beispiel von ET++: Design-Muster, Klassen-

bibliothek, Werkzeuge. Springer-Verlag, Berlin, 1992.

12. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. A catalog of object-oriented design
patterns. Technical Report in preparation, IBM Research Division, 1992.

13. Mehdi T. Harandi and Frank H. Young. Software design using reusable algorithm abstraction. In In

Proc. 2nd IEEE/BCS Conf. on Software Engineering, pages 94{97, 1985.
14. Richard Helm, Tien Huynh, Catherine Lassez, and Kim Marriott. A linear constraint technology for

user interfaces. In Graphics Interface, pages 301{309, Vancouver, British Columbia, 1992.

15. Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides. An object-oriented architecture for

constraint-based graphical editing. In Proceedings of the Third Eurographics Workshop on Object-

Oriented Graphics, pages 1{22, Champ�ery, Switzerland, October 1992. Also available as IBM Research

Division Technical Report RC 18524 (79392).
16. Ralph Johnson. Documenting frameworks using patterns. In Object-Oriented Programming Systems,

Languages, and Applications Conference Proceedings, pages 63{76, Vancouver, BC, October 1992.

17. Ralph E. Johnson, Carl McConnell, and J. Michael Lake. The RTL system: A framework for code
optimization. In Robert Giegerich and Susan L. Graham, editors, Code Generation|Concepts, Tools,

Techniques. Proceedings of the International Workshop on Code Generation, pages 255{274, Dagstuhl,

Germany, 1992. Springer-Verlag.
18. S. Katz, C.A. Richter, and K.-S. The. Paris: A system for reusing partially interpreted schemas. In

Proc. of the Ninth International Conference on Software Engineering, 1987.

19. Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view controller user interface
paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26{49, August/September

1988.

20. Charles W. Krueger. Software reuse. ACM Computing Surveys, 24(2), June 1992.
21. Mark A. Linton. Encapsulating a C++ library. In Proceedings of the 1992 USENIX C++ Conference,

pages 57{66, Portland, OR, August 1992.

22. Mark A. Linton, John M. Vlissides, and Paul R. Calder. Composing user interfaces with InterViews.

Computer, 22(2):8{22, February 1989.

23. William F. Opdyke and Ralph E. Johnson. Refactoring: An aid in designing application frameworks and
evolving object-oriented systems. In SOOPPA Conference Proceedings, pages 145{161, Marist College,

Poughkeepsie, NY, September 1990.

24. Charles Rich and Richard C. Waters. Formalizing reusable software components in the programmer's
apprentice. In Ted J. Biggersta� and Alan J. Perlis, editors, Software Reusability, Volume II, pages

313{343. Addison-Wesley, 1989.

25. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorenson. Object-
Oriented Modeling and Design. Prentice Hall, Englewood Cli�s, New Jersey, 1991.

26. Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge. IEEE Transactions on

Software Engineering, 10(5), September 1984.
27. James C. Spohrer and Elliot Soloway. Novice mistakes: Are the folk wisdoms correct? Communications

of the ACM, 29(7):624{632, July 1992.

28. ParcPlace Systems. ParcPlace Systems, Objectworks/Smalltalk Release 4 Users Guide. Mountain View,
California, 1990.

29. David Ungar and Randall B. Smith. Self: The power of simplicity. In Object-Oriented Programming

Systems, Languages, and Applications Conference Proceedings, pages 227{242, Orlando, Florida, October
1987.

30. John M. Vlissides and Mark A. Linton. Unidraw: A framework for building domain-speci�c graphical

editors. ACM Transactions on Information Systems, 8(3):237{268, July 1990.
31. Andr�e Weinand, Erich Gamma, and Rudolf Marty. ET++|An object-oriented application framework in

C++. In Object-Oriented Programming Systems, Languages, and Applications Conference Proceedings,

pages 46{57, San Diego, CA, September 1988.
32. Rebecca Wirfs-Brock and Ralph E. Johnson. A survey of current research in object-oriented design.

Communications of the ACM, 33(9):104{124, 1990.

A Catalog Overview

The following summarizes the patterns in our current catalog.

Abstract Factory provides an interface for creating generic product objects. It removes dependencies on

concrete product classes from clients that create product objects.
Adapter makes the protocol of one class conform to the protocol of another.

Bridge separates an abstraction from its implementation. The abstraction may vary its implementations

transparently and dynamically.
Builder provides a generic interface for incrementally constructing aggregate objects. A Builder hides

details of how objects in the aggregate are created, represented, and composed.

Command objecti�es the request for a service. It decouples the creator of the request for a service from
the executor of that service.

Composite treats multiple, recursively-composed objects as a single object.

Chain of Responsibility de�nes a hierarchy of objects, typically arranged from more speci�c to more
general, having responsibility for handling a request.

Factory Method lets base classes create instances of subclass-dependent objects.

Flyweight de�nes how objects can be shared. Flyweights support object abstraction at the �nest granu-
larity.

Glue de�nes a single point of access to objects in a subsystem. It provides a higher level of encapsulation

for objects in the subsystem.
Interpreter de�nes how to represent the grammar, abstract syntax tree, and interpreter for simple lan-

guages.

Iterator objecti�es traversal algorithms over object structures.
Mediator decouples and manages the collaboration between objects.

Memento opaquely encapsulates a snapshot of the internal state of an object and is used to restore the

object to its original state.
Observer enforces synchronization, coordination, and consistency constraints between objects.

Prototype creates new objects by cloning a prototypical instance. Prototypes permit clients to install and

con�gure dynamically the instances of particular classes they need to instantiate.
Proxy acts as a convenient surrogate or placeholder for another object. Proxies can restrict, enhance, or

alter an object's properties.

Solitaire de�nes a one-of-a-kind object that provides access to unique or well-known services and variables.
State lets an object change its behavior when its internal state changes, e�ectively changing its class.

Strategy objecti�es an algorithm or behavior.

Template Method implements an abstract algorithm, deferring speci�c steps to subclass methods.
Walker centralizes operations on object structures in one class so that these operations can be changed

independently of the classes de�ning the structure.

Wrapper attaches additional services, properties, or behavior to objects. Wrappers can be nested recur-
sively to attach multiple properties to objects.

Abstract Factory Object Creational

Intent
Abstract Factory provides an interface for creating generic product objects. It removes dependencies
on concrete product classes from clients that create product objects.

Motivation
Consider a user interface toolkit that supports multiple standard look-and-feels, say, Motif and Open

Look, and provides di�erent scroll bars for each. It is undesirable to hard-code dependencies on either
standard into the application|the choice of look-and-feel and hence scroll bar may be deferred until

run-time. Specifying the class of scroll bar limits
exibility and reusability by forcing a commitment to
a particular class instead of a particular protocol. An Abstract Factory avoids this commitment.

An abstract base class WindowKit declares services for creating scroll bars and other controls. Controls

for Motif and Open Look are derived from common abstract classes. For each look-and-feel there is a

concrete subclass of WindowKit that de�nes services to create the appropriate control. For example,
the CreateScrollBar() operation on the MotifKit would instantiate and return a Motif scroll bar, while

the corresponding operation on the OpenLookKit returns an Open Look scroll bar. Clients access a

speci�c kit through the interface declared by the WindowKit class, and they access the controls created
by a kit only by their generic interface.

OpenLookWindowKit

Window ScrollBarWindowKit

CreateScrollBar()
CreateWIndow()

CreateScrollBar()
CreateWindow()

MotifWindow MotifScrollbar OpenLookScrollbarOpenLookWindow

MotifWindowKit

CreateScrollBar()
CreateWindow()

return
 new OpenLookScrollBar

return
 new MotifWindow

Applicability
When the classes of the product objects are variable, and dependencies on these classes must be removed
from a client application.

When variations on the creation, composition, or representation of aggregate objects or subsystems must

be removed from a client application. Di�erences in con�guration can be obtained by using di�erent

concrete factories. Clients do not explicitly create and con�gure the aggregate or subsystem but defer
this responsibility to an AbstractFactory class. Clients instead call a method of the AbstractFactory

that returns an object providing access to the aggregate or subsystem.

Participants

� AbstractFactory

{ declares a generic interface for operations that create generic product objects.

� ConcreteFactory

{ de�nes the operations that create speci�c product objects.

� GenericProduct

{ declares a generic interface for product objects.

� Speci�cProduct

{ de�nes a product object created by the corresponding concrete factory.

{ all product classes must conform to the generic product interface.

Collaborations

� Usually a single instance of a ConcreteFactory class is created at run-time. This concrete factory
creates product objects having a particular implementation. To use di�erent product objects, clients

must be con�gured to use a di�erent concrete factory.

� AbstractFactory defers creation of product objects to its ConcreteFactory subclasses.

Diagram

CreateFont

AbstractFactory

ConcreteFactory2ConcreteFactory1

MakeProductA()

MakeProductA() MakeProductA()

MakeProductB()

ProductA1

GenericProductA

ProductA2

MakeProductB()

MakeProductB()

GenericProductB

ProductB1 ProductB2

return
 new ProductA2

return
 new ProductA1

Consequences
Abstract Factory provides a focus during development for changing and controlling the types of objects

created by clients. Because a factory objecti�es the responsibility for and the process of creating prod-

uct objects, it isolates clients from implementation classes. Only generic interfaces are visible to clients.

Implementation class names do not appear in client code. Clients can be de�ned and implemented solely

in terms of protocols instead of classes.

Abstract factories that encode class names in operation signatures can be di�cult to extend with new

kinds of product objects. This can require redeclaring the AbstractFactory and all ConcreteFactories.

Abstract factories can be composed with subordinate factory objects. Responsibility for creating objects
is delegated to these sub-factories. Composition of abstract factories provides a simple way to extend

the kinds of objects a factory is responsible for creating.

Examples
InterViews uses the \Kit" su�x [21] to denote abstract factory classes. It de�nes WidgetKit and Di-
alogKit abstract factories for generating look-and-feel-speci�c user interface objects. InterViews also

includes a LayoutKit that generates di�erent composition objects depending on the layout desired.

ET++ [31] employs the Abstract Factory pattern to achieve portability across di�erent window systems
(XWindows and SunView, for example). The WindowSystem abstract base class de�nes the interface for

creating objects representing window system resources (for example, MakeWindow, MakeFont, Make-

Color). Concrete subclasses implement the interfaces for a speci�c window system. At run-time ET++
creates an instance of a concrete WindowSystem subclass that creates system resource objects.

Implementation
A novel implementation is possible in Smalltalk. Because classes are �rst-class objects, it is not nec-

essary to have distinct ConcreteFactory subclasses to create the variations in products. Instead, it is
possible to store classes that create these products in variables inside a concrete factory. These classes

create new instances on behalf of the concrete factory. This technique permits variation in product

objects at �ner levels of granularity than by using distinct concrete factories. Only the classes kept in
variables need to be changed.

See Also
Factory Method: Abstract Factories are often implemented using Factory Methods.

Strategy Object Behavioral

Intent
A Strategy objecti�es an algorithm or behavior, allowing the algorithm or behavior to be varied inde-
pendently of its clients.

Motivation
There are many algorithms for breaking a text stream into lines. It is impossible to hard-wire all such

algorithms into the classes that require them. Di�erent algorithms might be appropriate at di�erent
times.

One way to address this problem is by de�ning separate classes that encapsulate the di�erent linebreak-

ing algorithms. An algorithm objecti�ed in this way is called a Strategy. InterViews [22] and ET++ [31]
use this approach.

Suppose a Composition class is responsible for maintaining and updating the line breaks of text displayed

in a text viewer. Linebreaking strategies are not implemented by the class Composition. Instead, they

are implemented separately by subclasses of the Compositor class. Compositor subclasses implement
di�erent strategies as follows:

{ SimpleCompositor implements a simple strategy that determines line breaks one at a time.

{ TeXCompositor implements the TEXalgorithm for �nding line breaks. This strategy tries to

optimize line breaks globally, that is, one paragraph at a time.

{ ArrayCompositor implements a strategy that is used not for text but for breaking a collection

of icons into rows. It selects breaks so that each row has a �xed number of items.

A Composition maintains a reference to a Compositor object. Whenever a Composition is required to

�nd line breaks, it forwards this responsibility to its current Compositor object. The client of Compo-
sition speci�es which Compositor should be used by installing the corresponding Compositor into the

Composition (see the diagram below).

Applicability
Whenever an algorithm or behavior should be selectable and replaceable at run-time, or when there

exist variations in the implementation of the algorithm, re
ecting di�erent space-time tradeo�s, for

example.

Use a Strategy whenever many related classes di�er only in their behavior. Strategies provide a way to
con�gure a single class with one of many behaviors.

Participants

� Strategy

{ objecti�es and encapsulates an algorithm or behavior.

� StrategyContext

{ maintains a reference to a Strategy object.

{ maintains the state manipulated by the Strategy.

{ can be con�gured by passing it an appropriate Strategy object.

Collaborations

� Strategy manipulates the StrategyContext. The StrategyContext normally passes itself as an ar-

gument to the Strategy's methods. This allows the Strategy to call back the StrategyContext as

required.

� StrategyContext forwards requests from its clients to the Strategy. Usually clients pass Strategy

objects to the StrategyContext. Thereafter clients only interact with the StrategyContext. There is
often a family of Strategy classes from which a client can choose.

Diagram

breaks

Composition

ArrayCompositor TeXCompositor SimpleCompositor

strategies

strategy context

compositor

count = compositor−>Compose(breaks)Repair()

Pick()

Compose() Compose() Compose()

composition

Compositor

Compose()

Consequences
Strategies can de�ne a family of policies that a StrategyContext can reuse. Separating a Strategy
from its context increases reusability, because the Strategy may vary independently from the Strategy-

Context.

Variations on an algorithm can also be implemented with inheritance, that is, with an abstract class

and subclasses that implement di�erent behaviors. However, this hard-wires the implementation into a
speci�c class; it is not possible to change behaviors dynamically. This results in many related classes that

di�er only in some behavior. It is often better to break out the variations of behavior into their own

classes. The Strategy pattern thus increases modularity by localizing complex behavior. The typical

alternative is to scatter conditional statements throughout the code that select the behavior to be

performed.

Implementation
The interface of a Strategy and the common functionality among Strategies is often factored out in

an abstract class. Strategies should avoid maintaining state across invocations so that they can be used

repeatedly and in multiple contexts.

Examples
In the RTL System for compiler code optimization [17], Strategies de�ne di�erent register allocation

schemes (RegisterAllocator) and di�erent instruction set scheduling policies (RISCscheduler, CISC-

scheduler). This gives
exibility in targeting the optimizer for di�erent machine architectures.

The ET++SwapsManager calculation engine framework [10] computes prices for di�erent �nancial in-

struments. Its key abstractions are Instrument and YieldCurve. Di�erent instruments are implemented

as subclasses of Instrument. The YieldCurve calculates discount factors to present value future cash

ows. Both of these classes delegate some behavior to Strategy objects. The framework provides a fam-

ily of Strategy classes that de�ne algorithms to generate cash
ows, to value swaps, and to calculate

discount factors. New calculation engines are created by parameterizing Instrument and YieldCurve

with appropriate Strategy objects. This approach supports mixing and matching existing Strategy

implementations while permitting the de�nition of new Strategy objects.

See Also
Walker often implements algorithms over recursive object structures. Walkers can be considered com-

pound strategies.

Wrapper Compound Structural

Intent
A Wrapper attaches additional services, properties, or behavior to objects. Wrappers can be nested
recursively to attach multiple properties to objects.

Motivation
Sometimes it is desirable to attach properties to individual objects instead of classes. In a graphi-

cal user interface toolkit, for example, properties such as borders or services like scrolling should be
freely attachable to any user interface component.

One way to attach properties to components is via inheritance. Inheriting a border from a base class

will give all instances of its derived classes a border. This is in
exible because the choice of border is
made statically. It is more
exible to let a client decide how and when to decorate the component with

a border.

This can be achieved by enclosing the component in another object that adds the border. The enclosing

object, which must be transparent to clients of the component, is called a Wrapper. This transparency
is the key for nesting Wrappers recursively to construct more complex user interface components.

A Wrapper forwards requests to its enclosed user interface component. The Wrapper may perform

additional actions before or after forwarding the request, such as drawing a border around a user
interface component.

Typical properties or services provided by user interface Wrappers are:

{ decorations like borders, shadows, or scroll bars; or

{ services like scrolling or zooming.

The following diagram illustrates the composition of a TextView with a BorderWrapper and a Scroll-
Wrapper to produce a bordered, scrollable TextView.

component (ScrollWrapper)

component

(BorderWrapper)

(TextView)

Applicability
When properties or behaviors should be attachable to individual objects dynamically and transpar-
ently.

When there is a need to extend classes in an inheritance hierarchy. Rather than modifying their base

class, instances are enclosed in a Wrapper that adds the additional behavior and properties. Wrappers

thus provide an alternative to extending the base class without requiring its modi�cation. This is of

particular concern when the base class comes from a class library that cannot be modi�ed.

Participants

� Component

{ the object to which additional properties or behaviors are attached.

� Wrapper

{ encapsulates and enhances its Component. It de�nes an interface that conforms to its Compo-

nent's.

{ Wrapper maintains a reference to its Component.

Collaborations

� Wrapper forwards requests to its Component. It may optionally perform additional operations before

and after forwarding the request.

Diagram
VisualComponent

BorderWrapper

borderWidth

component
Button

Draw() Draw()

Draw()

draw Border;
component−>Draw()

Consequences
Using Wrappers to add properties is more
exible than using inheritance. With Wrappers, proper-

ties can be attached and detached at run-time simply by changing the Wrapper. Inheritance would

require creating a new class for each property composition (for example, BorderdScrollableTextView,
BorderedTextView). This clutters the name space of classes unnecessarily and should be avoided. More-

over, providing di�erent Wrapper classes for a speci�c Component class allows mixing and matching

behaviors and properties.

Examples
Most object-oriented user interface toolkits use Wrappers to add graphical embellishments to widgets.

Examples include InterViews [22], ET++ [31], and the ParcPlace Smalltalk class library [28]. More ex-
otic applications of Wrappers are the DebuggingGlyph from InterViews and the PassivityWrapper from

ParcPlace Smalltalk. A DebuggingGlyph prints out debugging information before and after it forwards

a layout request to its enclosed object. This trace information can be used to analyze and debug the
layout behavior of objects in a complex object composition. The PassivityWrapper can enable or disable

user interactions with the enclosed object.

Implementation
Implementation of a set of Wrapper classes is simpli�ed by an abstract base class, which forwards
all requests to its component. Derived classes can then override only those operations for which they

want to add behavior. The abstract base class ensures that all other requests are passed automatically

to the Component.

See Also
Adapter: A Wrapper is di�erent from an Adapter, because a Wrapper only changes an object's proper-

ties and not its interface; an Adapter will give an object a completely new interface.

Composite: A Wrapper can be considered a degenerate Composite with only one component. However,

a Wrapper adds additional services|it is not intented for object aggregation.

This article was processed using the LaTEX macro package with LLNCS style

